
Rui S Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/120902/publications.pdf Version: 2024-02-01

PILLS OLIVEIDA

#	Article	IF	CITATIONS
1	Early detection, herbicide resistance screening, and integrated management of invasive plant species: a review. Pest Management Science, 2022, 78, 3957-3972.	1.7	26
2	<i>Solanum elaeagnifolium</i> Cav. (Solanales: Solanaceae) presence confirmed in Portugal. EPPO Bulletin, 2022, 52, 499-504.	0.6	5
3	Role of bacteria and mycorrhizal fungi in phytomining: status and future perspectives. , 2021, , 15-26.		3
4	Encapsulation of Pseudomonas libanensis in alginate beads to sustain bacterial viability and inoculation of Vigna unguiculata under drought stress. 3 Biotech, 2021, 11, 293.	1.1	8
5	Using microbial seed coating for improving cowpea productivity under a lowâ€input agricultural system. Journal of the Science of Food and Agriculture, 2020, 100, 1092-1098.	1.7	11
6	Seed coating with inocula of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for nutritional enhancement of maize under different fertilisation regimes. Archives of Agronomy and Soil Science, 2019, 65, 31-43.	1.3	40
7	Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Frontiers in Plant Science, 2019, 10, 1357.	1.7	189
8	Seed Coating with Arbuscular Mycorrhizal Fungi for Improved Field Production of Chickpea. Agronomy, 2019, 9, 471.	1.3	19
9	Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. Journal of Hazardous Materials, 2019, 379, 120813.	6.5	146
10	Growth and nutrition of cowpea (<i>Vigna unguiculata</i>) under water deficit as influenced by microbial inoculation via seed coating. Journal of Agronomy and Crop Science, 2019, 205, 447-459.	1.7	27
11	Delivery of Inoculum of Rhizophagus irregularis via Seed Coating in Combination with Pseudomonas libanensis for Cowpea Production. Agronomy, 2019, 9, 33.	1.3	31
12	Biodegradation of mono-, di- and trifluoroacetate by microbial cultures with different origins. New Biotechnology, 2018, 43, 23-29.	2.4	29
13	Soil Microorganisms. , 2018, , 457-482.		2
14	Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme. Critical Reviews in Biotechnology, 2017, 37, 880-897.	5.1	50
15	Increased protein content of chickpea (<i>Cicer arietinum</i> L.) inoculated with arbuscular mycorrhizal fungi and nitrogenâ€fixing bacteria under water deficit conditions. Journal of the Science of Food and Agriculture, 2017, 97, 4379-4385.	1.7	43
16	Improved grain yield of cowpea (Vigna unguiculata) under water deficit after inoculation with Bradyrhizobium elkanii and Rhizophagus irregularis. Crop and Pasture Science, 2017, 68, 1052.	0.7	28
17	Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation. Frontiers in Plant Science, 2016, 7, 918.	1.7	324
18	Bioaugmentation with Endophytic Bacterium E6S Homologous to Achromobacter piechaudii Enhances Metal Rhizoaccumulation in Host Sedum plumbizincicola. Frontiers in Plant Science, 2016, 7, 75.	1.7	65

RUI S OLIVEIRA

#	Article	IF	CITATIONS
19	Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant <i>Coriandrum sativum</i> L. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 320-328.	1.1	23
20	Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (<i>Triticum aestivum</i> L.). Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 329-337.	1.1	43
21	Cytotoxicity Induced by Extracts of <i>Pisolithus tinctorius</i> Spores on Human Cancer and Normal Cell Lines—Evaluation of the Anticancer Potential. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 840-847.	1.1	4
22	Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium <i>Bacillus</i> sp. SC2b and Its Role in Rhizoremediation. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 931-944.	1.1	67
23	The response of Betula pubescens to inoculation with an ectomycorrhizal fungus and a plant growth promoting bacterium is substrate-dependent. Ecological Engineering, 2015, 81, 439-443.	1.6	9
24	The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Journal of Environmental Management, 2015, 156, 62-69.	3.8	251
25	Emerging Risks and Strategies for Environment and Health Protection. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 789-789.	1.1	0
26	Diversity and Persistence of Ectomycorrhizal Fungi and Their Effect on Nursery-Inoculated Pinus pinaster in a Post-fire Plantation in Northern Portugal. Microbial Ecology, 2014, 68, 761-772.	1.4	18
27	Reclamation of an abandoned burned forest using ectomycorrhizal inoculated Quercus rubra. Forest Ecology and Management, 2014, 320, 50-55.	1.4	10
28	Influence of mixtures of acenaphthylene and benzo[a]anthracene on their degradation by Pleurotus ostreatus in sandy soil. Journal of Soils and Sediments, 2014, 14, 829-834.	1.5	4
29	Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Frontiers in Plant Science, 2014, 5, 757.	1.7	79
30	Effect of diflubenzuron on the development of Pinus pinaster seedlings inoculated with the ectomycorrhizal fungus Pisolithus tinctorius. Environmental Science and Pollution Research, 2013, 20, 582-590.	2.7	12
31	Combined use of Pinus pinaster plus and inoculation with selected ectomycorrhizal fungi as an ecotechnology to improve plant performance. Ecological Engineering, 2012, 43, 95-103.	1.6	28
32	Mycorrhizal symbiosis affected by different genotypes of Pinus pinaster. Plant and Soil, 2012, 359, 245-253.	1.8	16
33	Ectomycorrhizal fungi as an alternative to the use of chemical fertilisers in nursery production of Pinus pinaster. Journal of Environmental Management, 2012, 95, S269-S274.	3.8	42
34	Reforestation of burned stands: The effect of ectomycorrhizal fungi on Pinus pinaster establishment. Soil Biology and Biochemistry, 2011, 43, 2115-2120.	4.2	26
35	Management of nursery practices for efficient ectomycorrhizal fungi application in the production of Quercus ilex. Symbiosis, 2010, 52, 125-131.	1.2	26
36	Genetic, phenotypic and functional variation within a Glomus geosporum isolate cultivated with or without the stress of a highly alkaline anthropogenic sediment. Applied Soil Ecology, 2010, 45, 39-48.	2.1	18

RUI S OLIVEIRA

#	Article	IF	CITATIONS
37	Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environmental Pollution, 2008, 151, 608-620.	3.7	54
38	EDDS and EDTA-enhanced zinc accumulation by solanum nigrum inoculated with arbuscular mycorrhizal fungi grown in contaminated soil. Chemosphere, 2008, 70, 1002-1014.	4.2	50
39	Solanum nigrum grown in contaminated soil: Effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Environmental Pollution, 2007, 145, 691-699.	3.7	62
40	Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere, 2006, 65, 1256-1263.	4.2	66
41	Different native arbuscular mycorrhizal fungi influence the coexistence of two plant species in a highly alkaline anthropogenic sediment. Plant and Soil, 2006, 287, 209-221.	1.8	41