Xikang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12090174/publications.pdf

Version: 2024-02-01

840776 940533 16 674 11 16 citations h-index g-index papers 16 16 16 881 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Conjugation-Break Spacers in Semiconducting Polymers: Impact on Polymer Processability and Charge Transport Properties. Macromolecules, 2015, 48, 2048-2053.	4.8	106
2	Effect of Broken Conjugation on the Stretchability of Semiconducting Polymers. Macromolecular Rapid Communications, 2016, 37, 1623-1628.	3.9	87
3	Meltâ€Processing of Complementary Semiconducting Polymer Blends for High Performance Organic Transistors. Advanced Materials, 2017, 29, 1605056.	21.0	82
4	Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films. Nature Communications, 2017, 8, 16070.	12.8	78
5	Complementary Semiconducting Polymer Blends: The Influence of Conjugation-Break Spacer Length in Matrix Polymers. Macromolecules, 2016, 49, 2601-2608.	4.8	61
6	Symmetry Breaking in Side Chains Leading to Mixed Orientations and Improved Charge Transport in Isoindigo- <i>alt</i> -Bithiophene Based Polymer Thin Films. ACS Applied Materials & Samp; Interfaces, 2017, 9, 25426-25433.	8.0	58
7	Complementary Semiconducting Polymer Blends for Efficient Charge Transport. Chemistry of Materials, 2015, 27, 7164-7170.	6.7	57
8	Understanding Interfacial Alignment in Solution Coated Conjugated Polymer Thin Films. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27863-27874.	8.0	42
9	Complementary Semiconducting Polymer Blends: Influence of Side Chains of Matrix Polymers. Macromolecules, 2017, 50, 6202-6209.	4.8	23
10	Attaining Melt Processing of Complementary Semiconducting Polymer Blends at $130\hat{\text{A}}^{\circ}\text{C}$ via Side-Chain Engineering. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4904-4909.	8.0	22
11	Direct arylation polymerization of asymmetric push–pull aryl halides. Polymer Chemistry, 2017, 8, 2438-2441.	3.9	14
12	Design of an n-type low glass transition temperature radical polymer. Polymer Chemistry, 2021, 12, 1448-1457.	3.9	13
13	Tuning a Lanthanide Complex To Be Responsive to the Environment in Solution. Journal of Physical Chemistry A, 2015, 119, 11650-11658.	2.5	10
14	Zoneâ€Annealingâ€Assisted Solventâ€Free Processing of Complementary Semiconducting Polymer Blends for Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2018, 4, 1700414.	5.1	9
15	Manipulating polymer composition to create low-cost, high-fidelity sensors for indoor CO2 monitoring. Scientific Reports, 2021, 11, 13237.	3.3	9
16	A Carbon Nanotube-Functional Polymer Composite Film for Low-Power Indoor COâ,, Monitoring. IEEE Sensors Journal, 2022, 22, 11233-11240.	4.7	3