
Leonardo Erijman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1209006/publications.pdf Version: 2024-02-01

LEONADOO EDIMAN

#	Article	IF	CITATIONS
1	Extracellular hydrolytic potential drives microbiome shifts during anaerobic co-digestion of sewage sludge and food waste. Bioresource Technology, 2022, 343, 126102.	9.6	13
2	Microbiomes and glyphosate biodegradation in edaphic and aquatic environments: recent issues and trends. World Journal of Microbiology and Biotechnology, 2022, 38, 98.	3.6	13
3	Modulation of Maize Rhizosphere Microbiota Composition by Inoculation with Azospirillum argentinense Az39 (Formerly A. brasilense Az39). Journal of Soil Science and Plant Nutrition, 2022, 22, 3553-3567.	3.4	8
4	Long-run bacteria-phage coexistence dynamics under natural habitat conditions in an environmental biotechnology system. ISME Journal, 2021, 15, 636-648.	9.8	12
5	Impacts of switching tillage to no-tillage and vice versa on soil structure, enzyme activities and prokaryotic community profiles in Argentinean semi-arid soils. FEMS Microbiology Ecology, 2021, 97, .	2.7	14
6	Glyphosate Biodegradation Potential in Soil Based on Glycine Oxidase Gene (thiO) from Bradyrhizobium. Current Microbiology, 2021, 78, 1991-2000.	2.2	9
7	Editorial: Meta-omic Approaches to the Complex Anaerobic Communities in Wastewater Treatment Plants and Digesters. Frontiers in Microbiology, 2021, 12, 664716.	3.5	Ο
8	A rapid and simple protocol for concentration of SARS-CoV-2 from sewage. Journal of Virological Methods, 2021, 297, 114272.	2.1	6
9	Microbiome network analysis of co-occurrence patterns in anaerobic co-digestion of sewage sludge and food waste. Water Science and Technology, 2019, 79, 1956-1965.	2.5	16
10	Time Series Genome-Centric Analysis Unveils Bacterial Response to Operational Disturbance in Activated Sludge. MSystems, 2019, 4, .	3.8	23
11	Soil microbial communities and glyphosate decay in soils with different herbicide application history. Science of the Total Environment, 2018, 634, 974-982.	8.0	59
12	Genetic Approaches for Improving Performance of Microbial Fuel Cells: Part A. , 2018, , 243-285.		0
13	Shotgun Metagenomic Profiles Have a High Capacity To Discriminate Samples of Activated Sludge According to Wastewater Type. Applied and Environmental Microbiology, 2016, 82, 5186-5196.	3.1	52
14	High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration. Global Ecology and Conservation, 2016, 6, 242-256.	2.1	61
15	Expression of stress-related proteins inSediminibacteriumsp. growing under planktonic conditions. Journal of Basic Microbiology, 2015, 55, 1134-1140.	3.3	7
16	Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale. Environmental Microbiology, 2015, 17, 678-688.	3.8	71
17	The Bias Associated with Amplicon Sequencing Does Not Affect the Quantitative Assessment of Bacterial Community Dynamics. PLoS ONE, 2014, 9, e99722.	2.5	45
18	Draft Genome Sequences of Type Strain Sediminibacterium salmoneum NJ-44 and <i>Sediminibacterium</i> sp. Strain C3, a Novel Strain Isolated from Activated Sludge. Genome Announcements, 2014, 2, .	0.8	13

LEONARDO ERIJMAN

#	Article	IF	CITATIONS
19	The influence of soil properties on denitrifying bacterial communities and denitrification potential in no-till production farms under contrasting management in the Argentinean Pampas. Applied Soil Ecology, 2014, 75, 172-180.	4.3	22
20	Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks. Water Research, 2013, 47, 3854-3864.	11.3	183
21	Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells. Bioresource Technology, 2012, 126, 328-335.	9.6	43
22	Bacterial Indicator of Agricultural Management for Soil under No-Till Crop Production. PLoS ONE, 2012, 7, e51075.	2.5	77
23	Balance of Neutral and Deterministic Components in the Dynamics of Activated Sludge Floc Assembly. Microbial Ecology, 2011, 61, 486-495.	2.8	58
24	Nonrandom Assembly of Bacterial Populations in Activated Sludge Flocs. Microbial Ecology, 2010, 59, 436-444.	2.8	25
25	Diversity of nitrifying bacteria in a full-scale petroleum refinery wastewater treatment plant experiencing unstable nitrification. Journal of Hazardous Materials, 2010, 181, 281-288.	12.4	48
26	Maintenance of phenol hydroxylase genotypes at high diversity in bioreactors exposed to step increases in phenol loading. FEMS Microbiology Ecology, 2010, 73, no-no.	2.7	10
27	Quantitative assessment of phenol hydroxylase diversity in bioreactors using a functional gene analysis. Applied Microbiology and Biotechnology, 2008, 78, 863-872.	3.6	13
28	Impact of non-ionic surfactant on the long-term development of lab-scale-activated sludge bacterial communities. Research in Microbiology, 2007, 158, 712-717.	2.1	10
29	Anaerobic nonylphenol ethoxylate degradation coupled to nitrate reduction in a modified biodegradability batch test. Chemosphere, 2007, 68, 2136-2143.	8.2	11
30	Bacterial taxa abundance pattern in an industrial wastewater treatment system determined by the full rRNA cycle approach. Environmental Microbiology, 2007, 9, 1780-1789.	3.8	56
31	Replicability of dominant bacterial populations after long-term surfactant-enrichment in lab-scale activated sludge. Environmental Microbiology, 2006, 8, 625-638.	3.8	42
32	Bacterial community shifts in nonylphenol polyethoxylates-enriched activated sludge. Water Research, 2004, 38, 2077-2086.	11.3	51
33	Molecular monitoring of microbial diversity in an UASB reactor. International Biodeterioration and Biodegradation, 2003, 52, 7-12.	3.9	41
34	Continuous biosorption of Cu and Zn by immobilized waste biomass Sargassum sp Process Biochemistry, 2001, 36, 869-873.	3.7	147
35	Phosphorescence Emission of 7-Azatryptophan and 5-Hydroxytryptophan in Fluid Solutions and in α2RNA Polymerase. Biochemical and Biophysical Research Communications, 1998, 248, 347-351.	2.1	10
36	Reversible Stalling of Transcription Elongation Complexes by High Pressure. Biophysical Journal, 1998, 75, 453-462.	0.5	38

LEONARDO ERIJMAN

#	Article	IF	CITATIONS
37	Molecular Recognition by Calmodulin:  Pressure-Induced Reorganization of a Novel Calmodulinâ^'Peptide Complex. Biochemistry, 1996, 35, 1599-1605.	2.5	14
38	High pressure electrophoresis in narrow bore glass tubes: One―and twoâ€dimensional separations of protein subunits. Review of Scientific Instruments, 1996, 67, 813-817.	1.3	9
39	Heterogeneity ofE. coliRNA Polymerase Revealed by High Pressure. Journal of Molecular Biology, 1995, 253, 259-265.	4.2	16
40	Analysis of Dissociation and Unfolding of Oligomeric Proteins Using a Flat Bed Gel Electrophoresis at High Pressure. Analytical Biochemistry, 1994, 218, 364-369.	2.4	13
41	USE OF SENSITIZED FLUORESCENCE FOR THE STUDY OF THE EXCHANGE OF SUBUNITS IN PROTEIN AGGREGATES. Photochemistry and Photobiology, 1993, 57, 411-415.	2.5	22
42	Reversible dissociation and conformational stability of dimeric ribulose bisphosphate carboxylase. Biochemistry, 1993, 32, 5187-5195.	2.5	36
43	Oligomeric protein associations: transition from stochastic to deterministic equilibrium. Biochemistry, 1991, 30, 1595-1599.	2.5	77
44	Protein kinase C in Trypanosoma cruzi epimastigote forms: partial purification and characterization. Molecular and Biochemical Parasitology, 1989, 36, 101-108.	1.1	67
45	New methods for spectrofluorometer monochromator wavelength calibration. Journal of Proteomics, 1988, 17, 61-66.	2.4	3