Sergio AndÃ²

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12089361/publications.pdf

Version: 2024-02-01

71102 98798 5,043 67 41 67 citations h-index g-index papers 67 67 67 3298 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 2011, 302, 107-120.	4.4	296
2	Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters, 2009, 277, 422-432.	4.4	281
3	Mineralogical and chemical variability of fluvial sediments1. Bedload sand (Ganga–Brahmaputra,) Tj ETQq1 1 C	0.784314 4.4	rgBT /Overlock
4	Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters, 2008, 273, 138-151.	4.4	229
5	Orogenic Belts and Orogenic Sediment Provenance. Journal of Geology, 2007, 115, 315-334.	1.4	222
6	Chapter 20 Heavy Mineral Concentration in Modern Sands: Implications for Provenance Interpretation. Developments in Sedimentology, 2007, , 517-545.	0.5	167
7	Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sedimentary Geology, 2012, 280, 165-178.	2.1	163
8	Petrology of Nile River sands (Ethiopia and Sudan): Sediment budgets and erosion patterns. Earth and Planetary Science Letters, 2006, 252, 327-341.	4.4	159
9	Sand petrology and focused erosion in collision orogens: the Brahmaputra case. Earth and Planetary Science Letters, 2004, 220, 157-174.	4.4	139
10	The modern Nile sediment system: Processes and products. Quaternary Science Reviews, 2015, 130, 9-56.	3.0	139
11	Petrology of the Namib Sand Sea: Long-distance transport and compositional variability in the wind-displaced Orange Delta. Earth-Science Reviews, 2012, 112, 173-189.	9.1	129
12	Physical controls on sand composition and relative durability of detrital minerals during ultraâ€long distance littoral and aeolian transport (<scp>N</scp> amibia and southern <scp>A</scp> ngola). Sedimentology, 2015, 62, 971-996.	3.1	129
13	Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis. Earth and Planetary Science Letters, 2005, 229, 287-302.	4.4	128
14	Weathering and Relative Durability of Detrital Minerals in Equatorial Climate: Sand Petrology and Geochemistry in the East African Rift. Journal of Geology, 2013, 121, 547-580.	1.4	127
15	Provenance and recycling of Arabian desert sand. Earth-Science Reviews, 2013, 120, 1-19.	9.1	123
16	The provenance of Taklamakan desert sand. Earth and Planetary Science Letters, 2016, 437, 127-137.	4.4	120
17	Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya). Earth and Planetary Science Letters, 2007, 258, 500-515.	4.4	113
18	Provenance of Passive-Margin Sand (Southern Africa). Journal of Geology, 2014, 122, 17-42.	1.4	103

#	Article	IF	CITATIONS
19	Heavy Minerals for Junior Woodchucks. Minerals (Basel, Switzerland), 2019, 9, 148.	2.0	103
20	Quaternary dust source variation across the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435, 254-264.	2.3	96
21	Sediment recycling at convergent plate margins (Indo-Burman Ranges and Andaman–Nicobar Ridge). Earth-Science Reviews, 2013, 123, 113-132.	9.1	90
22	Geology of the Cenozoic Indus Basin sedimentary rocks: Paleoenvironmental interpretation of sedimentation from the western Himalaya during the early phases of India-Eurasia collision. Tectonics, 2010, 29, $n/a-n/a$.	2.8	85
23	Forward compositional modelling of Alpine orogenic sediments. Sedimentary Geology, 2012, 280, 149-164.	2.1	78
24	A detrital record of the Nile River and its catchment. Journal of the Geological Society, 2017, 174, 301-317.	2.1	78
25	Chapter 29 Plate Tectonics and Heavy Mineral Suites of Modern Sands. Developments in Sedimentology, 2007, , 741-763.	0.5	76
26	Paleogeographic and paleodrainage changes during Pleistocene glaciations (Po Plain, Northern Italy). Earth-Science Reviews, 2011, 105, 25-48.	9.1	74
27	Petrology of Riftedâ€Margin Sand (Red Sea and Gulf of Aden, Yemen). Journal of Geology, 2001, 109, 277-297.	1.4	66
28	Raman spectroscopy in heavy-mineral studies. Geological Society Special Publication, 2014, 386, 395-412.	1.3	66
29	Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets. Geomorphology, 2016, 261, 177-192.	2.6	62
30	Collisionâ€Orogen Provenance (Western Alps): Detrital Signatures and Unroofing Trends. Journal of Geology, 2004, 112, 145-164.	1.4	59
31	The Continental Crust as a Source of Sand (Southern Alps Cross Section, Northern Italy). Journal of Geology, 2006, 114, 533-554.	1.4	59
32	Ultra-long distance littoral transport of Orange sand and provenance of the Skeleton Coast Erg (Namibia). Marine Geology, 2014, 357, 25-36.	2.1	54
33	Indentation of the Pamirs with respect to the northern margin of Tibet: Constraints from the Tarim basin sedimentary record. Tectonics, 2016, 35, 2345-2369.	2.8	52
34	The Euphrates-Tigris-Karun river system: Provenance, recycling and dispersal of quartz-poor foreland-basin sediments in arid climate. Earth-Science Reviews, 2016, 162, 107-128.	9.1	51
35	Actualistic Ophiolite Provenance: The Cyprus Case. Journal of Geology, 2000, 108, 199-218.	1.4	50
36	Sedimentary processes controlling ultralong cells of littoral transport: Placer formation and termination of the Orange sand highway in southern Angola. Sedimentology, 2018, 65, 431-460.	3.1	50

#	Article	IF	CITATIONS
37	Diagenetic control on mineralogical suites in sand, silt, and mud (Cenozoic Nile Delta): Implications for provenance reconstructions. Earth-Science Reviews, 2018, 185, 122-139.	9.1	49
38	Congo River sand and the equatorial quartz factory. Earth-Science Reviews, 2019, 197, 102918.	9.1	47
39	Detrital Fingerprints of Fossil Continental-Subduction Zones (Axial Belt Provenance, European Alps). Journal of Geology, 2010, 118, 341-362.	1.4	45
40	Modern Sand from Obducted Ophiolite Belts (Sultanate of Oman and United Arab Emirates). Journal of Geology, 2002, 110, 371-391.	1.4	44
41	Controlling factors on heavy mineral assemblages in Chinese loess and Red Clay. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 381-382, 110-118.	2.3	44
42	Dynamic uplift, recycling, and climate control on the petrology of passive-margin sand (Angola). Sedimentary Geology, 2018, 375, 86-104.	2.1	43
43	Geological and soil maps of the Palaeo-Agulhas Plain for the Last Glacial Maximum. Quaternary Science Reviews, 2020, 235, 105858.	3.0	42
44	Quantifying Roundness of Detrital Minerals By Image Analysis: Sediment Transport, Shape Effects, and Provenance Implications. Journal of Sedimentary Research, 2018, 88, 276-289.	1.6	37
45	Gravimetric Separation of Heavy Minerals in Sediments and Rocks. Minerals (Basel, Switzerland), 2020, 10, 273.	2.0	37
46	Metamorphic grade of source rocks revealed by chemical fingerprints of detrital amphibole and garnet. Geological Society Special Publication, 2014, 386, 351-371.	1.3	35
47	Using Fourier transform infrared spectroscopy to determine mineral phases in sediments. Sedimentary Geology, 2018, 375, 27-35.	2.1	35
48	Tracing Transcontinental Sand Transport: from Anatolia–zagros To the Rub' Al Khali Sand Sea. Journal of Sedimentary Research, 2017, 87, 1196-1213.	1.6	30
49	Southern Hemisphere anticyclonic circulation drives oceanic and climatic conditions in late Holocene southernmost Africa. Climate of the Past, 2017, 13, 649-665.	3.4	28
50	Raman spectroscopy as an effective tool for high-resolution heavy-mineral analysis: Examples from major Himalayan and Alpine fluvio-deltaic systems. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 450-455.	3.9	24
51	Provenance of Thal Desert sand: Focused erosion in the western Himalayan syntaxis and foreland-basin deposition driven by latest Quaternary climate change. Earth-Science Reviews, 2020, 207, 103220.	9.1	24
52	Provenance of Bengal Shelf Sediments: 2. Petrology and Geochemistry of Sand. Minerals (Basel,) Tj ETQq0 0 0 rg	BT_/Overlo	ock_10 Tf 50 1
53	Raman counting: a new method to determine provenance of silt. Rendiconti Lincei, 2011, 22, 327-347.	2.2	22
54	Tracking sediment provenance and erosional evolution of the western Greater Caucasus. Earth Surface Processes and Landforms, 2014, 39, 1101-1114.	2.5	18

#	Article	IF	CITATIONS
55	Multicyclic sediment transfer along and across convergent plate boundaries (Barbados, Lesser) Tj ETQq1 1 0.7843	14 rgBT /0 2.7	Dyerlock 1.0
56	Deciphering relationships between the Nicobar and Bengal submarine fans, Indian Ocean. Earth and Planetary Science Letters, 2020, 544, 116329.	4.4	18
57	Provenance of Bengal Shelf Sediments: 1. Mineralogy and Geochemistry of Silt. Minerals (Basel,) Tj ETQq1 1 0.784	314 rgBT 2.0	/Overlock 1
58	Focused erosion in the Alps constrained by fission-track ages on detrital apatites. Geological Society Special Publication, 2009, 324, 141-152.	1.3	16
59	Comparability of heavy mineral data – The first interlaboratory round robin test. Earth-Science Reviews, 2020, 211, 103210.	9.1	16
60	Multimineral Fingerprinting of Transhimalayan and Himalayan Sources of Indus-Derived Thal Desert Sand (Central Pakistan). Minerals (Basel, Switzerland), 2019, 9, 457.	2.0	15
61	Provenance of Cenozoic Indus Fan Sediments (IODP Sites U1456 and U1457). Journal of Sedimentary Research, 2020, 90, 1114-1127.	1.6	12
62	Composition of Amphiboles in the Tremolite–Ferro–Actinolite Series by Raman Spectroscopy. Minerals (Basel, Switzerland), 2019, 9, 491.	2.0	11
63	Large-scale mass wasting on the Miocene continental margin of western India. Bulletin of the Geological Society of America, 2020, 132, 85-112.	3.3	11
64	Sediment Generation and Sediment Routing Systems. Earth-Science Reviews, 2020, 207, 103221.	9.1	10
65	Soil-formation in the central Mediterranean: Insight from heavy minerals. Catena, 2021, 197, 104998.	5.0	10
66	Detrital orthopyroxene as a tracer of geodynamic setting:. Chemical Geology, 2022, 596, 120809.	3.3	9
67	Evolution of the Upper Yellow River as Revealed by Changes in Heavy-Mineral and Geochemical (REE) Signatures of Fluvial Terraces (Lanzhou, China). Minerals (Basel, Switzerland), 2019, 9, 603.	2.0	7