Youngseok Ryou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12089313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How Pt Interacts with CeO ₂ under the Reducing and Oxidizing Environments at Elevated Temperature: The Origin of Improved Thermal Stability of Pt/CeO ₂ Compared to CeO ₂ . Journal of Physical Chemistry C, 2016, 120, 25870-25879.	3.1	185
2	Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application. Applied Catalysis B: Environmental, 2017, 212, 140-149.	20.2	127
3	Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: Evidence of isolated-Pd species obtained after a high-temperature thermal treatment. Applied Catalysis B: Environmental, 2018, 226, 71-82.	20.2	89
4	Effect of various activation conditions on the low temperature NO adsorption performance of Pd/SSZ-13 passive NOx adsorber. Catalysis Today, 2019, 320, 175-180.	4.4	81
5	Influence of the Defect Concentration of Ceria on the Pt Dispersion and the CO Oxidation Activity of Pt/CeO ₂ . Journal of Physical Chemistry C, 2018, 122, 4972-4983.	3.1	62
6	Effect of reduction treatments (H2 vs. CO) on the NO adsorption ability and the physicochemical properties of Pd/SSZ-13 passive NOx adsorber for cold start application. Applied Catalysis A: General, 2019, 569, 28-34.	4.3	61
7	Comparative study of the mobility of Pd species in SSZ-13 and ZSM-5, and its implication for their activity as passive NO _x adsorbers (PNAs) after hydro-thermal aging. Catalysis Science and Technology, 2019, 9, 163-173.	4.1	58
8	Low temperature NO adsorption over hydrothermally aged Pd/CeO2 for cold start application. Catalysis Today, 2018, 307, 93-101.	4.4	55
9	Effect of sulfur aging and regeneration on low temperature NO adsorption over hydrothermally treated Pd/CeO 2 and Pd/Ce 0.58 Zr 0.42 O 2 catalysts. Catalysis Today, 2017, 297, 53-59.	4.4	35
10	Roles of ZrO2 in SO2-poisoned Pd/(Ce-Zr)O2 catalysts for CO oxidation. Catalysis Today, 2015, 258, 518-524.	4.4	28
11	Comparison of NOx Adsorption/Desorption Behaviors over Pd/CeO2 and Pd/SSZ-13 as Passive NOx Adsorbers for Cold Start Application. Emission Control Science and Technology, 2019, 5, 172-182.	1.5	28
12	Oxychlorination of methane over FeOx/CeO2 catalysts. Korean Journal of Chemical Engineering, 2018, 35, 2185-2190.	2.7	10
13	Highly selective production of syngas (>99%) in the partial oxidation of methane at 480°C over Pd/CeO2 catalyst promoted by HCl. Applied Surface Science, 2021, 560, 150043.	6.1	6