
Sneha Sundaram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12088182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolomes of Lewis lung carcinoma metastases and normal lung tissue from mice fed different diets. Journal of Nutritional Biochemistry, 2022, 107, 109051.	4.2	5
2	Voluntary running of defined distances alters bone microstructure in C57BL/6 mice fed a high-fat diet. Applied Physiology, Nutrition and Metabolism, 2021, 46, 1337-1344.	1.9	1
3	Mammary Tumorigenesis and Metabolome in Male Adipose Specific Monocyte Chemotactic Protein-1 Deficient MMTV-PyMT Mice Fed a High-Fat Diet. Frontiers in Oncology, 2021, 11, 667843.	2.8	4
4	Dietary Selenium Supplementation Does Not Attenuate Mammary Tumorigenesis-Mediated Bone Loss in Male MMTV-PyMT Mice. Biological Trace Element Research, 2020, 194, 221-227.	3.5	2
5	Adipose monocyte chemotactic protein-1 deficiency reduces high-fat diet-enhanced mammary tumorigenesis in MMTV-PyMT mice. Journal of Nutritional Biochemistry, 2020, 77, 108313.	4.2	3
6	Metabolome of Mammary Tumors Differs from Normal Mammary Glands But Is Not Altered by Time-restricted Feeding Under Obesogenic Conditions. Anticancer Research, 2020, 40, 3697-3705.	1.1	3
7	High-Fat Diet Alters Circadian Rhythms in Mammary Glands of Pubertal Mice. Frontiers in Endocrinology, 2020, 11, 349.	3.5	10
8	Time-restricted Feeding Attenuates High-fat Diet-enhanced Spontaneous Metastasis of Lewis Lung Carcinoma in Mice. Anticancer Research, 2019, 39, 1739-1748.	1.1	30
9	Adipose-specific Monocyte Chemotactic Protein-1 Deficiency Reduces Pulmonary Metastasis of Lewis Lung Carcinoma in Mice. Anticancer Research, 2019, 39, 1729-1738.	1.1	6
10	Dietary Supplementation with Methylseleninic Acid Inhibits Mammary Tumorigenesis and Metastasis in Male MMTV-PyMT Mice. Biological Trace Element Research, 2018, 184, 186-195.	3.5	11
11	Lipidomic Impacts of an Obesogenic Diet Upon Lewis Lung Carcinoma in Mice. Frontiers in Oncology, 2018, 8, 134.	2.8	16
12	A high-sucrose diet does not enhance spontaneous metastasis of Lewis lung carcinoma in mice. Nutrition Research, 2018, 58, 55-61.	2.9	3
13	Voluntary running of defined distances reduces body adiposity and its associated inflammation in C57BL/6 mice fed a high-fat diet. Applied Physiology, Nutrition and Metabolism, 2017, 42, 1179-1184.	1.9	9
14	Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma. Oncotarget, 2017, 8, 23303-23311.	1.8	7
15	Weight loss reduces basal-like breast cancer through kinome reprogramming. Cancer Cell International, 2016, 16, 26.	4.1	16
16	cMET inhibitor crizotinib impairs angiogenesis and reduces tumor burden in the C3(1)-Tag model of basal-like breast cancer. SpringerPlus, 2016, 5, 348.	1.2	14
17	Highâ€Fat Diets Containing Different Amounts of n3 and n6 Polyunsaturated Fatty Acids Modulate Inflammatory Cytokine Production in Mice. Lipids, 2016, 51, 571-582.	1.7	25
18	Time-restricted feeding reduces adiposity in mice fed a high-fat diet. Nutrition Research, 2016, 36, 603-611.	2.9	84

SNEHA SUNDARAM

#	Article	IF	CITATIONS
19	Dietary energy restriction reduces high-fat diet-enhanced metastasis of Lewis lung carcinoma in mice. Oncotarget, 2016, 7, 65669-65675.	1.8	22
20	Monocyte chemotactic protein-1 deficiency reduces spontaneous metastasis of Lewis lung carcinoma in mice fed a high-fat diet. Oncotarget, 2016, 7, 24792-24799.	1.8	19
21	High-fat Diet Enhances Mammary Tumorigenesis and Pulmonary Metastasis and Alters Inflammatory and Angiogenic Profiles in MMTV-PyMT Mice. Anticancer Research, 2016, 36, 6279-6288.	1.1	47
22	High-fat Diet Enhances and Plasminogen Activator Inhibitor-1 Deficiency Attenuates Bone Loss in Mice with Lewis Lung Carcinoma. Anticancer Research, 2015, 35, 3839-47.	1.1	2
23	Obesity-Mediated Regulation of HGF/c-Met Is Associated with Reduced Basal-Like Breast Cancer Latency in Parous Mice. PLoS ONE, 2014, 9, e111394.	2.5	18
24	Weight Loss Reversed Obesity-Induced HGF/c-Met Pathway and Basal-Like Breast Cancer Progression. Frontiers in Oncology, 2014, 4, 175.	2.8	32
25	Role of HGF in obesity-associated tumorigenesis: C3(1)-TAg mice as a model for human basal-like breast cancer. Breast Cancer Research and Treatment, 2013, 142, 489-503.	2.5	36
26	Obesity, metabolism and the microenvironment: Links to cancer. Journal of Carcinogenesis, 2013, 12, 19.	2.5	81
27	Targeted Drug and Gene Delivery Systems for Lung Cancer Therapy. Clinical Cancer Research, 2009, 15, 7299-7308.	7.0	44
28	Surfaceâ€functionalized nanoparticles for targeted gene delivery across nasal respiratory epithelium. FASEB Journal, 2009, 23, 3752-3765.	0.5	38
29	Luteinizing hormone-releasing hormone receptor–targeted deslorelin-docetaxel conjugate enhances efficacy of docetaxel in prostate cancer therapy. Molecular Cancer Therapeutics, 2009, 8, 1655-1665.	4.1	35
30	Differential expression of LHRH-receptor in bovine nasal tissue and its role in deslorelin delivery. Peptides, 2009, 30, 351-358.	2.4	2
31	Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Molecular Vision, 2006, 12, 1185-98.	1.1	56
32	Evidence for LHRH-Receptor Expression in Human Airway Epithelial (Calu-3) Cells and Its Role in the Transport of an LHRH Agonist. Pharmaceutical Research, 2004, 21, 1034-1046.	3.5	17
33	Lung Gene Therapy: Clinical and Regulatory Issues. Clinical Research and Regulatory Affairs, 2004, 21, 1-28.	2.1	2