Magid A Abou-Gharbia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1208698/publications.pdf

Version: 2024-02-01

80 papers 2,758 citations

201674 27 h-index 189892 50 g-index

84 all docs 84 docs citations

84 times ranked 4155 citing authors

#	Article	IF	CITATIONS
1	Targeting SARS-CoV-2 M3CLpro by HCV NS3/4a Inhibitors: <i>In Silico</i> Modeling and <i>In Vitro</i> Screening. Journal of Chemical Information and Modeling, 2021, 61, 1020-1032.	5.4	25
2	"I'll Be Back― The Resurrection of Dezocine. ACS Medicinal Chemistry Letters, 2021, 12, 961-968.	2.8	11
3	MC-100093, a Novel $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Lactam Glutamate Transporter-1 Enhancer Devoid of Antimicrobial Properties, Attenuates Cocaine Relapse in Rats. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 51-59.	2.5	6
4	Discovery of novel class of histone deacetylase inhibitors as potential anticancer agents. Bioorganic and Medicinal Chemistry, 2021, 42, 116251.	3.0	4
5	Discovery of Novel Small-Molecule Inhibitors of SARS-CoV-2 Main Protease as Potential Leads for COVID-19 Treatment. Journal of Chemical Information and Modeling, 2021, 61, 4745-4757.	5.4	12
6	Oleic acid–reinforced PEGylated polymethacrylate transdermal film with enhanced antidyslipidemic activity and bioavailability of atorvastatin: A mechanistic ex-vivo/in-vivo analysis. International Journal of Pharmaceutics, 2021, 608, 121057.	5.2	10
7	Novel compounds that reverse the disease phenotype in Type 2 Gaucher disease patient-derived cells. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126806.	2.2	3
8	Discovery and SAR of Novel Disubstituted Quinazolines as Dual PI3Kalpha/mTOR Inhibitors Targeting Breast Cancer. ACS Medicinal Chemistry Letters, 2020, 11, 2156-2164.	2.8	8
9	Facile synthesis of the glucosylceramide synthase inhibitor GZ667161. Tetrahedron Letters, 2020, 61, 152352.	1.4	0
10	The Resurrection of Phenotypic Drug Discovery. ACS Medicinal Chemistry Letters, 2020, 11, 1820-1828.	2.8	26
11	Novel inhibitors of Staphylococcus aureus RnpA that synergize with mupirocin. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1127-1131.	2.2	11
12	Targeting CDK9 Reactivates Epigenetically Silenced Genes in Cancer. Cell, 2018, 175, 1244-1258.e26.	28.9	182
13	Design and synthesis of functionalized piperazin-1yl-(E)-stilbenes as inhibitors of 17α-hydroxylase-C17,20-lyase (Cyp17). Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2270-2274.	2.2	8
14	Design, synthesis and SAR of new-di-substituted pyridopyrimidines as ATP-competitive dual PI3Kα/mTOR inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3117-3122.	2.2	10
15	Nuclear Magnetic Resonance Structure of the Human Polyoma JC Virus Agnoprotein. Journal of Cellular Biochemistry, 2017, 118, 3268-3280.	2.6	9
16	12/15-Lipoxygenase Inhibition Reverses Cognitive Impairment, Brain Amyloidosis, and Tau Pathology by Stimulating Autophagy in Aged Triple Transgenic Mice. Biological Psychiatry, 2017, 81, 92-100.	1.3	66
17	A Mitochondrial-targeted purine-based HSP90 antagonist for leukemia therapy. Oncotarget, 2017, 8, 112184-112198.	1.8	17
18	Design, synthesis, and evaluation of (2 S ,4 R)-Ketoconazole sulfonamide analogs as potential treatments for Metabolic Syndrome. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5825-5829.	2.2	10

#	Article	IF	Citations
19	Resistance to BET Bromodomain Inhibitors Is Mediated by Kinome Reprogramming in Ovarian Cancer. Cell Reports, 2016, 16, 1273-1286.	6.4	165
20	Emerging From the Unknown: Structural and Functional Features of Agnoprotein of Polyomaviruses. Journal of Cellular Physiology, 2016, 231, 2115-2127.	4.1	28
21	Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer. Cancer Research, 2016, 76, 1494-1505.	0.9	88
22	Heterocyclic chalcone activators of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) with improved in vivo efficacy. Bioorganic and Medicinal Chemistry, 2015, 23, 5352-5359.	3.0	14
23	Small-Molecule Inhibitors of Staphylococcus aureus RnpA-Mediated RNA Turnover and tRNA Processing. Antimicrobial Agents and Chemotherapy, 2015, 59, 2016-2028.	3.2	17
24	A Novel Assay Platform for the Detection of Translation Modulators of Spermidine/ Spermine Acetyltransferase. Current Pharmaceutical Design, 2014, 20, 245-252.	1.9	1
25	Estrogen Receptor Antagonists Are Anti-Cryptococcal Agents That Directly Bind EF Hand Proteins and Synergize with Fluconazole <i>In Vivo</i> . MBio, 2014, 5, e00765-13.	4.1	91
26	Discovery of Innovative Therapeutics: Today's Realities and Tomorrow's Vision. 2. Pharma's Challenges and Their Commitment to Innovation. Journal of Medicinal Chemistry, 2014, 57, 5525-5553.	[;] 6.4	43
27	Synthesis and evaluation of Strychnos alkaloids as MDR reversal agents for cancer cell eradication. Bioorganic and Medicinal Chemistry, 2014, 22, 1148-1155.	3.0	30
28	Nuclear Magnetic Resonance Structure Revealed that the Human Polyomavirus JC Virus Agnoprotein Contains an α-Helix Encompassing the Leu/lle/Phe-Rich Domain. Journal of Virology, 2014, 88, 6556-6575.	3.4	21
29	Synthesis of rapamycin glycoconjugates via a CuAAC-based approach. Tetrahedron Letters, 2013, 54, 6999-7003.	1.4	12
30	Discovery of Innovative Therapeutics: Today's Realities and Tomorrow's Vision. 1. Criticisms Faced by the Pharmaceutical Industry. Journal of Medicinal Chemistry, 2013, 56, 5659-5672.	6.4	12
31	Targeting neurodegenerative diseases: Drug discovery in a challenging arena. Pure and Applied Chemistry, 2012, 84, 1543-1556.	1.9	5
32	Design and synthesis of 2-aminothiazole based antimicrobials targeting MRSA. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7719-7725.	2.2	38
33	A new and efficient synthetic route for the anxiolytic agent CL285032. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 259-261.	2.2	7
34	The Synthesis and Biological Evaluation of Quinolyl-piperazinyl Piperidines as Potent Serotonin 5-HT _{Antagonists. Journal of Medicinal Chemistry, 2010, 53, 4066-4084.}	6.4	14
35	Comparison of Human and Rat Uterine Leiomyomata: Identification of a Dysregulated Mammalian Target of Rapamycin Pathway. Cancer Research, 2009, 69, 6171-6178.	0.9	89
36	Prodrugs of Perzinfotel with Improved Oral Bioavailability. Journal of Medicinal Chemistry, 2009, 52, 771-778.	6.4	31

#	Article	IF	CITATIONS
37	Discovery of Innovative Small Molecule Therapeutics. Journal of Medicinal Chemistry, 2009, 52, 2-9.	6.4	30
38	Begacestat (GSI-953): A Novel, Selective Thiophene Sulfonamide Inhibitor of Amyloid Precursor Protein Î ³ -Secretase for the Treatment of Alzheimer's Disease. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 598-608.	2.5	147
39	Discovery of Begacestat, a Notch-1-Sparing γ-Secretase Inhibitor for the Treatment of Alzheimer's Disease. Journal of Medicinal Chemistry, 2008, 51, 7348-7351.	6.4	104
40	Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 33-38.	7.1	115
41	Enhanced clearance of $\hat{Al^2}$ in brain by sustaining the plasmin proteolysis cascade. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8754-8759.	7.1	123
42	Binding of novel rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. FASEB Journal, 2008, 22, 619-619.	0.5	1
43	Synthesis and Biological Evaluation of Benzodioxanylpiperazine Derivatives as Potent Serotonin 5-HT1AAntagonists:A The Discovery of Lecozotan. Journal of Medicinal Chemistry, 2005, 48, 3467-3470.	6.4	20
44	Tiplaxtinin, a Novel, Orally Efficacious Inhibitor of Plasminogen Activator Inhibitor-1:Â Design, Synthesis, and Preclinical Characterization. Journal of Medicinal Chemistry, 2004, 47, 3491-3494.	6.4	162
45	Design, Synthesis, and Biological Evaluation of Thio-Containing Compounds with Serum HDL-Cholesterol-Elevating Properties. Journal of Medicinal Chemistry, 2004, 47, 681-695.	6.4	48
46	Design, Synthesis, SAR, and Biological Evaluation of Highly Potent Benzimidazole-Spaced Phosphono-α-Amino Acid Competitive NMDA Antagonists of the AP-6 Type. Journal of Medicinal Chemistry, 2001, 44, 1516-1529.	6.4	49
47	Design, Synthesis, and Preclinical Characterization of Novel, Highly Selective Indole Estrogens. Journal of Medicinal Chemistry, 2001, 44, 1654-1657.	6.4	135
48	Discovery of a highly potent, functionally-selective muscarinic M1 agonist, WAY-132983 using rational drug design and receptor modelling. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1895-1900.	2.2	9
49	Synthesis and SAR of Adatanserin:Â Novel Adamantyl Aryl- and Heteroarylpiperazines with Dual Serotonin 5-HT1Aand 5-HT2Activity as Potential Anxiolytic and Antidepressant Agents. Journal of Medicinal Chemistry, 1999, 42, 5077-5094.	6.4	82
50	New generation dopaminergic agents 4. Exploiting the 2-methyl chroman scaffold. Synthesis and evaluation of two novel series of 2-(aminomethyl)-3,4,7,9-tetrahydro-2H-pyrano[2,3-e]indole and indol-8-one derivatives. Tetrahedron, 1998, 54, 7081-7108.	1.9	20
51	New generation dopaminergic agents. 2. Discovery of 3-OH-phenoxyethylamine and 3-OH-N1-phenylpiperazine dopaminergic templates. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 295-300.	2.2	20
52	Design and Synthesis of [2-(8,9-Dioxo-2,6-diazabicyclo[5.2.0]non-1(7)-en-2-yl)- ethyl]phosphonic Acid (EAA-090), a PotentN-Methyl-d-aspartate Antagonist, via the Use of 3-Cyclobutene-1,2-dione as an Achiral α-Amino Acid Bioisostere. Journal of Medicinal Chemistry, 1998, 41, 236-246.	6.4	71
53	New Generation Dopaminergic Agents. 1. Discovery of a Novel Scaffold Which Embraces the D2Agonist Pharmacophore. Structureâ ⁻ 'Activity Relationships of a Series of 2-(Aminomethyl)chromans. Journal of Medicinal Chemistry, 1997, 40, 4235-4256.	6.4	44
54	WAY-131256 is an orally active, efficacious, and in vivo functionally selective M1 agonist. Drug Development Research, 1997, 40, 185-192.	2.9	5

#	Article	IF	CITATIONS
55	New Antihistamines: Substituted Piperazine and Piperidine Derivatives as Novel H1-Antagonists. Journal of Medicinal Chemistry, 1995, 38, 4026-4032.	6.4	10
56	Chapter 1. Sigma Receptors and their Ligands: The Sigma Enigma. Annual Reports in Medicinal Chemistry, 1993, 28, 1-10.	0.9	30
57	Preclinical profile of Wy-49,051: A new H1-antagonist. Drug Development Research, 1990, 21, 63-78.	2.9	3
58	Chapter 1. Novel Antipsychotic Agents. Annual Reports in Medicinal Chemistry, 1990, 25, 1-10.	0.9	6
59	Synthesis and structure-activity relationship of substituted tetrahydro- and hexahydro-1,2-benzisothiazol-3-one 1,1-dioxides and thiadiazinones: potential anxiolytic agents. Journal of Medicinal Chemistry, 1989, 32, 1024-1033.	6.4	42
60	Behavioral pharmacology of the gamma carboline Wy 47,384: A potential antipsychotic agent. Drug Development Research, 1988, 13, 11-28.	2.9	7
61	Polycyclic aryl- and heteroarylpiperazinyl imides as 5-HT1A receptor ligands and potential anxiolytic agents: synthesis and structure-activity relationship studies. Journal of Medicinal Chemistry, 1988, 31, 1382-1392.	6.4	38
62	Psychotropic agents: synthesis and antipsychotic activity of substituted .betacarbolines. Journal of Medicinal Chemistry, 1987, 30, 1100-1105.	6.4	15
63	Antipsychotic activity of substituted .gammacarbolines. Journal of Medicinal Chemistry, 1987, 30, 1818-1823.	6.4	51
64	A NEW SYNTHESIS OF 2-BROMO-1-(9-PHENANTHRYL)ETHANE. Organic Preparations and Procedures International, 1985, 17, 195-198.	1.3	1
65	Reactions of ketenes with sulfilimines. Synthetic routes to oxazolinones and indolinones. Journal of Organic Chemistry, 1985, 50, 2224-2228.	3.2	22
66	Epiandrosterone- and Dehydroepiandrosterone-3β-alkanesulfonates as Inhibitors of Mouse Glucose-6-phosphate Dehydrogenase Activity. Journal of Pharmaceutical Sciences, 1984, 73, 1643-1645.	3.3	2
67	Tetrahydropyrrolo[1,2-a]quinoxalines and tetrahydropyrrolo[1,2-a]pyrido[3,2-a]pyrazines: vascular smooth muscle relaxants and antihypertensive agents. Journal of Medicinal Chemistry, 1984, 27, 1743-1746.	6.4	22
68	Reaction of N-acylsulfilimines with diphenyl ketene. A new synthesis of 2-oxazolin-4-ones. Tetrahedron Letters, 1983, 24, 2811-2814.	1.4	10
69	Metabolism of <i>N</i> ^G -monomethyl- <scp>L</scp> -arginine. Canadian Journal of Biochemistry and Cell Biology, 1983, 61, 850-855.	1.3	10
70	Synthesis of N-nitrosocimetidine hydrate and nitrate and tritium-labeling studies. Journal of Organic Chemistry, 1981, 46, 2193-2194.	3.2	11
71	Inhibition of DNA synthesis in mouse epidermis and breast epithelium by dehydroepiandrosterone and related steroids. Carcinogenesis, 1981, 2, 717-721.	2.8	66
72	Mass spectra of nitrones. Electron impact mass spectra of fluorenone nitrones. Journal of Chemical & Engineering Data, 1981, 26, 216-218.	1.9	2

#	Article	lF	CITATIONS
73	Synthesis of Dehydroepiandrosterone Sulfatide and 16α-Halogenated Steroids. Journal of Pharmaceutical Sciences, 1981, 70, 1154-1157.	3.3	7
74	Dehydroepiandrosterone and 16α-bromo-epiandrosterone: inhibitors of Epstein-Barr virus-induced transformation of human lymphocytes. Carcinogenesis, 1981, 2, 683-686.	2.8	44
75	The mass spectra of fluorenone nitrones. Organic Mass Spectrometry, 1980, 15, 489-490.	1.3	1
76	Reaction of <u>tert</u> -Butylcyanoketene with 2′-Cyclohexylspiro [Fluorene-9,3′-Oxaziridine]. Synthetic Communications, 1979, 9, 871-876.	2.1	4
77	AN IMPROVED SYNTHESIS OF FLUORENONE METHYLNITRONE. Organic Preparations and Procedures International, 1979, 11, 95-96.	1.3	5
78	Cycloaddition of ketenes with N-fluorenylidenealkylamine and -arylamine oxides. Synthesis of spirooxazolidinones and spiroisoxazolidinones. Journal of Organic Chemistry, 1979, 44, 2961-2966.	3.2	22
79	Synthesis of Spirofluorenes of Biological Interest. Journal of Pharmaceutical Sciences, 1978, 67, 953-956.	3.3	7
80	Synthesis and Hydrolysis of Fluorene-9-spiro-2′-(N-aryl-3′,3′-dichloroaziridines). Journal of Pharmaceutical Sciences, 1977, 66, 1653-1655.	3.3	5