Huanxin Ju

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12086794/publications.pdf

Version: 2024-02-01

		159585	330143
37	9,635	30	37
papers	citations	h-index	g-index
37	37	37	11040
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Efficient Photoelectrochemical Conversion of Methane into Ethylene Glycol by WO ₃ Nanobar Arrays. Angewandte Chemie, 2021, 133, 9443-9447.	2.0	20
2	Efficient Photoelectrochemical Conversion of Methane into Ethylene Glycol by WO ₃ Nanobar Arrays. Angewandte Chemie - International Edition, 2021, 60, 9357-9361.	13.8	71
3	Visibleâ€Lightâ€Driven Overall Water Splitting Boosted by Tetrahedrally Coordinated Blende Cobalt(II) Oxide Atomic Layers. Angewandte Chemie - International Edition, 2019, 58, 3032-3036.	13.8	41
4	Visibleâ€Lightâ€Driven Overall Water Splitting Boosted by Tetrahedrally Coordinated Blende Cobalt(II) Oxide Atomic Layers. Angewandte Chemie, 2019, 131, 3064-3068.	2.0	17
5	Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin Culn5S8 layers. Nature Energy, 2019, 4, 690-699.	39.5	948
6	Surface Plasmon Enabling Nitrogen Fixation in Pure Water through a Dissociative Mechanism under Mild Conditions. Journal of the American Chemical Society, 2019, 141, 7807-7814.	13.7	235
7	Ultrathin Cobalt Oxide Layers as Electrocatalysts for Highâ€Performance Flexible Zn–Air Batteries. Advanced Materials, 2019, 31, e1807468.	21.0	227
8	Ultrathin Conductor Enabling Efficient IR Light CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 423-430.	13.7	146
9	Surface Adatom Mediated Structural Transformation in Bromoarene Monolayers: Precursor Phases in Surface Ullmann Reaction. ACS Nano, 2018, 12, 2267-2274.	14.6	49
10	Surface Modification on Pd Nanostructures for Selective Styrene Oxidation with Molecular Oxygen. ChemNanoMat, 2018, 4, 467-471.	2.8	18
11	Infrared Light-Driven CO2 Overall Splitting at Room Temperature. Joule, 2018, 2, 1004-1016.	24.0	258
12	Dynamic Migration of Surface Fluorine Anions on Cobaltâ€Based Materials to Achieve Enhanced Oxygen Evolution Catalysis. Angewandte Chemie - International Edition, 2018, 57, 15471-15475.	13.8	178
13	Refining Defect States in W ₁₈ O ₄₉ by Mo Doping: A Strategy for Tuning N ₂ Activation towards Solar-Driven Nitrogen Fixation. Journal of the American Chemical Society, 2018, 140, 9434-9443.	13.7	722
14	Nickel Doping in Atomically Thin Tin Disulfide Nanosheets Enables Highly Efficient CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 10954-10958.	13.8	186
15	Nickel Doping in Atomically Thin Tin Disulfide Nanosheets Enables Highly Efficient CO ₂ Reduction. Angewandte Chemie, 2018, 130, 11120-11124.	2.0	42
16	Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers. Angewandte Chemie, 2017, 129, 9249-9253.	2.0	154
17	Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers. Angewandte Chemie - International Edition, 2017, 56, 9121-9125.	13.8	205
18	Nobleâ€Metalâ€Free Janusâ€like Structures by Cation Exchange for Zâ€Scheme Photocatalytic Water Splitting under Broadband Light Irradiation. Angewandte Chemie - International Edition, 2017, 56, 4206-4210.	13.8	166

#	Article	IF	CITATIONS
19	Nobleâ€Metalâ€Free Janusâ€like Structures by Cation Exchange for Zâ€Scheme Photocatalytic Water Splitting under Broadband Light Irradiation. Angewandte Chemie, 2017, 129, 4270-4274.	2.0	62
20	Integrated Quasiplane Heteronanostructures of MoSe ₂ /Bi ₂ Se ₃ Hexagonal Nanosheets: Synergetic Electrocatalytic Water Splitting and Enhanced Supercapacitor Performance. Advanced Functional Materials, 2017, 27, 1703864.	14.9	170
21	Exclusive Ni–N ₄ Sites Realize Near-Unity CO Selectivity for Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 14889-14892.	13.7	725
22	Partially Oxidized SnS ₂ Atomic Layers Achieving Efficient Visible-Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 18044-18051.	13.7	368
23	Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. Journal of the American Chemical Society, 2017, 139, 9419-9422.	13.7	558
24	Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation. Journal of the American Chemical Society, 2016, 138, 8928-8935.	13.7	840
25	Single Cobalt Atoms with Precise Nâ€Coordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10800-10805.	13.8	1,836
26	Single Cobalt Atoms with Precise Nâ€Coordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie, 2016, 128, 10958-10963.	2.0	373
27	Atomically Dispersed Ru on Ultrathin Pd Nanoribbons. Journal of the American Chemical Society, 2016, 138, 13850-13853.	13.7	132
28	Hungry Porphyrins: Protonation and Selfâ€Metalation of Tetraphenylporphyrin on TiO ₂ (110) ―1 × 1. ChemistrySelect, 2016, 1, 6103-6105.	1.5	30
29	Implementing Metalâ€toâ€Ligand Charge Transfer in Organic Semiconductor for Improved Visibleâ€Nearâ€Infrared Photocatalysis. Advanced Materials, 2016, 28, 6959-6965.	21.0	268
30	Metalation of tetraphenylporphyrin with nickel on a TiO2(110)-1 \tilde{A} — 2 surface. Nanoscale, 2016, 8, 1123-1132.	5.6	20
31	Design and Epitaxial Growth of MoSe ₂ –NiSe Vertical Heteronanostructures with Electronic Modulation for Enhanced Hydrogen Evolution Reaction. Chemistry of Materials, 2016, 28, 1838-1846.	6.7	310
32	Interface properties between a low band gap conjugated polymer and a calcium metal electrode. Physical Chemistry Chemical Physics, 2016, 18, 9446-9452.	2.8	4
33	Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag. Nano Research, 2015, 8, 3621-3629.	10.4	65
34	Coordination reaction between tetraphenylporphyrin and nickel on a TiO ₂ (110) surface. Chemical Communications, 2014, 50, 8291-8294.	4.1	44
35	Ca Carboxylate Formation at the Calcium/Poly(methyl methacrylate) Interface. Journal of Physical Chemistry C, 2012, 116, 20465-20471.	3.1	31
36	Electronic structures and chemical reactions at the interface between Li and regioregular poly (3-hexylthiophene). Organic Electronics, 2012, 13, 1060-1067.	2.6	16

#	Article	IF	CITATIONS
37	Direct Synthesis of Nickel(II) Tetraphenylporphyrin and Its Interaction with a Au(111) Surface: A Comprehensive Study. Journal of Physical Chemistry C, 2010, 114, 9908-9916.	3.1	100