Sudeep C Popat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1208657/publications.pdf

Version: 2024-02-01

331670 361022 36 1,298 21 35 citations h-index g-index papers 37 37 37 1537 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Importance of OH ^{â^'} Transport from Cathodes in Microbial Fuel Cells. ChemSusChem, 2012, 5, 1071-1079.	6.8	133
2	COVID-19 wastewater epidemiology: a model to estimate infected populations. Lancet Planetary Health, The, 2021, 5, e874-e881.	11.4	113
3	Kinetic, Electrochemical, and Microscopic Characterization of the Thermophilic, Anode-Respiring Bacterium <i>Thermincola ferriacetica</i> . Environmental Science & Environment	10.0	105
4	Biological Removal of Siloxanes from Landfill and Digester Gases: Opportunities and Challenges. Environmental Science & Enviro	10.0	100
5	Critical transport rates that limit the performance of microbial electrochemistry technologies. Bioresource Technology, 2016, 215, 265-273.	9.6	91
6	Dynamic Potentialâ€Dependent Electron Transport Pathway Shifts in Anode Biofilms of <i>Geobacter sulfurreducens</i> . ChemSusChem, 2014, 7, 3413-3419.	6.8	66
7	Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion. Water Research, 2010, 44, 5965-5972.	11.3	60
8	Tailoring Microbial Electrochemical Cells for Production of Hydrogen Peroxide at High Concentrations and Efficiencies. ChemSusChem, 2016, 9, 3345-3352.	6.8	60
9	Managing methanogens and homoacetogens to promote reductive dechlorination of trichloroethene with direct delivery of H ₂ in a membrane biofilm reactor. Biotechnology and Bioengineering, 2012, 109, 2200-2210.	3.3	49
10	Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells. Bioresource Technology, 2015, 195, 83-88.	9.6	46
11	H ₂ O ₂ Production in Microbial Electrochemical Cells Fed with Primary Sludge. Environmental Science & Envi	10.0	44
12	Anode Biofilms of <i>Geoalkalibacter ferrihydriticus</i> Exhibit Electrochemical Signatures of Multiple Electron Transport Pathways. Langmuir, 2015, 31, 12552-12559.	3 . 5	34
13	The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica. Bioelectrochemistry, 2016, 112, 47-52.	4.6	34
14	pH Dependency in Anode Biofilms of <i>Thermincola ferriacetica</i> Suggests a Proton-Dependent Electrochemical Response. Journal of the American Chemical Society, 2018, 140, 5527-5534.	13.7	34
15	Reductive Dehalogenation of Trichloroethene Vapors in an Anaerobic Biotrickling Filter. Environmental Science & Technology, 2009, 43, 7856-7861.	10.0	33
16	Selective Enrichment Yields Robust Ethene-Producing Dechlorinating Cultures from Microcosms Stalled at cis-Dichloroethene. PLoS ONE, 2014, 9, e100654.	2.5	33
17	Buffer p <i>K</i> _a and Transport Govern the Concentration Overpotential in Electrochemical Oxygen Reduction at Neutral pH. ChemElectroChem, 2014, 1, 1909-1915.	3.4	32
18	Palmitic acid accumulation limits methane production in anaerobic co-digestion of fats, oils and grease with municipal wastewater sludge. Chemical Engineering Journal, 2020, 396, 125235.	12.7	31

#	Article	IF	CITATIONS
19	Application of microbial electrolysis cells to treat spent yeast from an alcoholic fermentation. Bioresource Technology, 2016, 200, 342-349.	9.6	29
20	Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures. Applied Microbiology and Biotechnology, 2014, 98, 2729-2737.	3.6	28
21	Using electron balances and molecular techniques to assess trichoroetheneâ€induced shifts to a dechlorinating microbial community. Biotechnology and Bioengineering, 2012, 109, 2230-2239.	3.3	27
22	Understanding the impact of operational conditions on performance of microbial peroxide producing cells. Journal of Power Sources, 2017, 356, 448-458.	7.8	21
23	Decreased gas-diffusion electrode porosity due to increased electrocatalyst loading leads to diffusional limitations in cathodic H2O2 electrosynthesis. Journal of Power Sources, 2021, 481, 228992.	7.8	20
24	Non-negatively constrained least squares and parameter choice by the residual periodogram for the inversion of electrochemical impedance spectroscopy data. Journal of Computational and Applied Mathematics, 2015, 278, 52-74.	2.0	14
25	Maximizing Coulombic recovery and solids reduction from primary sludge by controlling retention time and pH in a flat-plate microbial electrolysis cell. Environmental Science: Water Research and Technology, 2017, 3, 333-339.	2.4	13
26	Electrochemical ammonia stripping from non-nitrified animal rendering wastewater. Chemical Engineering Journal Advances, 2020, 3, 100020.	5.2	8
27	Stabilization of Urea for Recovery from Source-Separated Urine Using Electrochemically Synthesized Hydrogen Peroxide. ACS ES&T Engineering, 2021, 1, 1642-1648.	7.6	6
28	The effect of packing hydrophilization on bacterial attachment and the relationship with the performance of biotrickling filters. Biotechnology and Bioengineering, 2009, 103, 1060-1067.	3.3	5
29	Taxonomic and Functional Variations Induced by an Overloading Event in Anaerobic Codigestion of Municipal Wastewater Sludge with Fats, Oils, and Grease. ACS ES&T Engineering, 2021, 1, 1205-1216.	7.6	5
30	Predicting COVID-19 Infected Individuals in a Defined Population from Wastewater RNA Data. ACS ES&T Water, 2022, 2, 2225-2232.	4.6	5
31	Electrocoagulation-electroflotation for primary treatment of animal rendering wastewater to enable recovery of fats. Chemical Engineering Journal, 2022, 431, 133910.	12.7	4
32	Primary sludge-based blackwater favors electrical current over methane production in microbial electrochemical cells. Journal of Water Process Engineering, 2022, 47, 102848.	5.6	4
33	Effect of feed-to-inoculum ratio on anaerobic digestibility of high-fat content animal rendering wastewater. Biochemical Engineering Journal, 2021, 176, 108215.	3.6	3
34	Evaluation of electrical current production in microbial electrolysis cells fed with animal rendering wastewater. Chemosphere, 2021, 285, 131547.	8.2	3
35	Water Recovery from Bioreactor Mixed Liquors Using Forward Osmosis with Polyelectrolyte Draw Solutions. Membranes, 2022, 12, 61.	3.0	3
36	Continuous hydrogen peroxide production in microbial electrochemical cells. Proceedings of the Water Environment Federation, 2015, 2015, 1-5.	0.0	0