Lili Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12086207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene-Wrapped Fe ₃ O ₄ Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials, 2010, 22, 5306-5313.	6.7	1,773
2	Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Advanced Science, 2018, 5, 1700322.	11.2	1,043
3	High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy and Environmental Science, 2014, 7, 3709-3719.	30.8	557
4	Structural Directed Growth of Ultrathin Parallel Birnessite on β-MnO ₂ for High-Performance Asymmetric Supercapacitors. ACS Nano, 2018, 12, 1033-1042.	14.6	436
5	Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes. Nano Letters, 2012, 12, 2446-2451.	9.1	382
6	Facile synthesis of hierarchical Co3O4@MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors. Journal of Power Sources, 2014, 252, 98-106.	7.8	354
7	A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film. Nano Letters, 2014, 14, 7180-7187.	9.1	346
8	Incorporation of Manganese Dioxide within Ultraporous Activated Graphene for High-Performance Electrochemical Capacitors. ACS Nano, 2012, 6, 5404-5412.	14.6	345
9	Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors. Scientific Reports, 2014, 4, 3878.	3.3	285
10	Large area CVD growth of graphene. Synthetic Metals, 2015, 210, 95-108.	3.9	182
11	Unraveling the Potassium Storage Mechanism in Graphite Foam. Advanced Energy Materials, 2019, 9, 1900579.	19.5	133
12	Aqueous Rechargeable Alkaline Co _{<i>x</i>} Ni _{2–<i>x</i>} S ₂ /TiO ₂ Battery. ACS Nano, 2016, 10, 1007-1016.	14.6	123
13	Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage. Nanoscale Horizons, 2016, 1, 340-374.	8.0	92
14	Doubleâ€Shelled Phosphorus and Nitrogen Codoped Carbon Nanospheres as Efficient Polysulfide Mediator for Highâ€Performance Lithium–Sulfur Batteries. Advanced Science, 2018, 5, 1800621.	11.2	83
15	Construction of vertically aligned PPy nanosheets networks anchored on MnCo2O4 nanobelts for high-performance asymmetric supercapacitor. Journal of Power Sources, 2018, 393, 169-176.	7.8	76
16	Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors. Nanomaterials, 2016, 6, 18.	4.1	65
17	Overwhelming microwave irradiation assisted synthesis of olivine-structured LiMPO4 (M=Fe, Mn, Co) Tj ETQq1 1	0.784314	l rgBT /Over
18	Few-Layered Trigonal WS ₂ Nanosheet-Coated Graphite Foam as an Efficient Free-Standing Electrode for a Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 30591-30598.	8.0	56

Lili Zhang

#	Article	IF	CITATIONS
19	Mechanism studies of LiFePO ₄ cathode material: lithiation/delithiation process, electrochemical modification and synthetic reaction. RSC Advances, 2014, 4, 54576-54602.	3.6	44
20	High Electrochemical Performance of LiFePO4 Cathode Material via In-Situ Microwave Exfoliated Graphene Oxide. Electrochimica Acta, 2015, 151, 240-248.	5.2	42
21	Liquid-Solid-Solution Assembly of CoFe 2 O 4 /Graphene Nanocomposite as a High-Performance Lithium-Ion Battery Anode. Electrochimica Acta, 2016, 215, 247-252.	5.2	41
22	Controllable synthesis of MnO ₂ nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor. CrystEngComm, 2018, 20, 1690-1697.	2.6	38
23	Rational design of polyaniline/MnO ₂ /carbon cloth ternary hybrids as electrodes for supercapacitors. RSC Advances, 2015, 5, 66311-66317.	3.6	36
24	Binary metal sulfides and polypyrrole on vertically aligned carbon nanotube arrays/carbon fiber paper as high-performance electrodes. Journal of Materials Chemistry A, 2015, 3, 22043-22052.	10.3	36
25	Low-Charge-Carrier-Scattering Three-Dimensional α-MnO ₂ /β-MnO ₂ Networks for Ultra-High-Rate Asymmetrical Supercapacitors. ACS Applied Energy Materials, 2019, 2, 1051-1059.	5.1	30
26	Dehydration of lactic acid to acrylic acid over lanthanum phosphate catalysts: the role of Lewis acid sites. Physical Chemistry Chemical Physics, 2016, 18, 23746-23754.	2.8	29
27	Controllable seeding of single crystal graphene islands from graphene oxide flakes. Carbon, 2014, 79, 406-412.	10.3	27
28	Selective conversion of lactic acid to acrylic acid over alkali and alkaline-earth metal co-modified NaY zeolites. Catalysis Science and Technology, 2017, 7, 6101-6111.	4.1	26
29	Substrate Engineering for CVD Growth of Single Crystal Graphene. Small Methods, 2021, 5, e2001213.	8.6	25
30	Lotus root-like porous carbon for potassium ion battery with high stability and rate performance. Journal of Power Sources, 2020, 466, 228303.	7.8	22
31	Selection of graphene dopants for Na3V2(PO4)3 graphene composite as high rate, ultra long-life sodium-ion battery cathodes. Electrochimica Acta, 2019, 306, 558-567.	5.2	21
32	Effective Oxygen Reduction Reaction Performance of FeCo Alloys In Situ Anchored on Nitrogen-Doped Carbon by the Microwave-Assistant Carbon Bath Method and Subsequent Plasma Etching. Nanomaterials, 2019, 9, 1284.	4.1	19
33	Simultaneous Immobilization and Conversion of Polysulfides on Co ₃ O ₄ –CoN Heterostructured Mediators toward High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2019, 2, 2570-2578.	5.1	18
34	Graphene-supported non-precious metal electrocatalysts for oxygen reduction reactions: the active center and catalytic mechanism. Journal of Materials Chemistry A, 2016, 4, 7148-7154.	10.3	17
35	A general strategy for in-situ fabrication of uniform carbon nanotubes on three-dimensional carbon architectures for electrochemical application. Applied Surface Science, 2019, 496, 143704.	6.1	13
36	Fabrication of mesoporous gold networks@MnO2 for high-performance supercapacitors. Gold Bulletin, 2017, 50, 61-68.	2.4	10

Lili Zhang

#	ARTICLE	IF	CITATIONS
37	High efficient oxygen reduction performance of Fe/Fe3C nanoparticles in situ encapsulated in nitrogen-doped carbon via a novel microwave-assisted carbon bath method. Nano Materials Science, 2019, 1, 131-136.	8.8	9
38	Electrochemical Preparation of Lithium-Rich Graphite Anode for LiFePO4 Battery. High Energy Chemistry, 2020, 54, 441-454.	0.9	7
39	In Situ-Generated Supported Potassium Lactate: Stable Catalysis for Vapor-Phase Dehydration of Lactic Acid to Acrylic Acid. ACS Omega, 2019, 4, 8146-8166.	3.5	6
40	Controllable fabrication of graphitic nanocarbon encapsulating FexNiy hybrids for efficient splitting of water. Journal of Alloys and Compounds, 2020, 829, 154421.	5.5	2