List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12085757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving luminescence and thermometric performance of Ba2CaWO6:Er3+ by tri-doping with Yb3+ and Na+. Journal of Rare Earths, 2023, 41, 42-50.	2.5	7
2	Controlling metallic Co0 in ZIF-67-derived N-C/Co composite catalysts for efficient photocatalytic CO2 reduction. Science China Materials, 2022, 65, 413-421.	3.5	23
3	g-C3N4 microtubes@CoNiO2 nanosheets p–n heterojunction with a hierarchical hollow structure for efficient photocatalytic CO2 reduction. Applied Surface Science, 2022, 579, 151997.	3.1	18
4	Local charge transfer within a covalent organic framework and Pt nanoparticles promoting interfacial catalysis. Catalysis Science and Technology, 2022, 12, 3240-3246.	2.1	1
5	Triple-Wavelength Lasing with a Stabilized β-LaBSiO ₅ :Nd ³⁺ Crystal. Journal of the American Chemical Society, 2022, 144, 11822-11830.	6.6	15
6	Lightâ€Driven Syngas Production over Defective ZnIn ₂ S ₄ Nanosheets. Chemistry - A European Journal, 2021, 27, 3786-3792.	1.7	37
7	Highly Dispersive Ni@C and Co@C Nanoparticles Derived from Metal–Organic Monolayers for Enhanced Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2021, 60, 10738-10748.	1.9	18
8	Oneâ€Pot Fabrication of Pd Nanoparticles@Covalentâ€Organicâ€Frameworkâ€Derived Hollow Polyamine Spheres as a Synergistic Catalyst for Tandem Catalysis. Chemistry - A European Journal, 2020, 26, 1864-1870.	1.7	18
9	Yb:Ca9Gd(VO4)7, a potential ultrafast pulse laser crystal with promising spectral properties. Journal of Luminescence, 2020, 221, 117085.	1.5	9
10	Integrating single Ni sites into biomimetic networks of covalent organic frameworks for selective photoreduction of CO ₂ . Chemical Science, 2020, 11, 6915-6922.	3.7	78
11	Amino-functionalized YF3:Eu3+ nanoparticles: A selective two-in-one fluorescent probe for Cr(III) and Cr(VI) detection. Journal of Luminescence, 2020, 226, 117440.	1.5	5
12	Wellâ€Defined Metal Nanoparticles@Covalent Organic Framework Yolk–Shell Nanocages by ZIFâ€8 Template as Catalytic Nanoreactors. Small, 2019, 15, e1804419.	5.2	87
13	Layered Rare Earth–Organic Framework as Highly Efficient Luminescent Matrix: The Crystal Structure, Optical Spectroscopy, Electronic Transition, and Luminescent Sensing Properties. Crystal Growth and Design, 2019, 19, 4754-4764.	1.4	19
14	Bottom-up analysis using liquid chromatography–Fourier transform mass spectrometry to characterize fucosylated chondroitin sulfates from sea cucumbers. Glycobiology, 2019, 29, 755-764.	1.3	9
15	Thioether-Functionalized 2D Covalent Organic Framework Featuring Specific Affinity to Au for Photocatalytic Hydrogen Production from Seawater. ACS Sustainable Chemistry and Engineering, 2019, 7, 18574-18581.	3.2	91
16	A Covalent Organic Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective Photoreduction of CO ₂ to CO. Journal of the American Chemical Society, 2019, 141, 7615-7621.	6.6	525
17	Using CaF ₂ :Eu ³⁺ powder as a luminescent probe to detect Cr ₂ O ₇ ²⁻ ions: a new application on the environmental conservation of an old optical material. Optical Materials Express, 2018, 8, 2782.	1.6	3
18	From Sr ₂ Nb ₂ O ₇ to Ca _{<i>x</i>} Sr _{2–<i>x</i>} Nb ₂ O ₇ : An Effective Enhancement of Nonlinear Optical Activity by a Simple Way of Cation Substituting. Crystal Growth and Design, 2018, 18, 4140-4149.	1.4	9

#	Article	IF	CITATIONS
19	A covalent organic framework bearing thioether pendant arms for selective detection and recovery of Au from ultra-low concentration aqueous solution. Chemical Communications, 2018, 54, 9977-9980.	2.2	114
20	Heparan Sulfate Domains Required for Fibroblast Growth Factor 1 and 2 Signaling through Fibroblast Growth Factor Receptor 1c. Journal of Biological Chemistry, 2017, 292, 2495-2509.	1.6	43
21	Flux Exploration, Growth, and Optical Spectroscopic Properties of Large Size LaBSiO ₅ and Eu ³⁺ -Substituted LaBSiO ₅ Crystals. Crystal Growth and Design, 2017, 17, 6541-6549.	1.4	15
22	Glycosaminoglycans and glycolipids as potential biomarkers in lung cancer. Glycoconjugate Journal, 2017, 34, 661-669.	1.4	26
23	Glycan Activation of a Sheddase: Electrostatic Recognition between Heparin and proMMP-7. Structure, 2017, 25, 1100-1110.e5.	1.6	11
24	Conformational flexibility of PL12 family heparinases: structure and substrate specificity of heparinase III from <i>Bacteroides thetaiotaomicron</i> (BT4657). Glycobiology, 2017, 27, 176-187.	1.3	14
25	Borrelia burgdorferi glycosaminoglycan-binding proteins: a potential target for new therapeutics against Lyme disease. Microbiology (United Kingdom), 2017, 163, 1759-1766.	0.7	25
26	GlycCompSoft: Software for Automated Comparison of Low Molecular Weight Heparins Using Top-Down LC/MS Data. PLoS ONE, 2016, 11, e0167727.	1.1	11
27	Characterization of growth, optical properties, and laser performance of monoclinic Yb:MgWO_4 crystal. Optical Materials Express, 2016, 6, 1627.	1.6	26
28	Differentiating Chondroitin Sulfate Glycosaminoglycans Using Collision-Induced Dissociation; Uronic Acid Cross-Ring Diagnostic Fragments in a Single Stage of Tandem Mass Spectrometry. European Journal of Mass Spectrometry, 2015, 21, 275-285.	0.5	17
29	Optimization of bioprocess conditions improves production of a CHO cellâ€derived, bioengineered heparin. Biotechnology Journal, 2015, 10, 1067-1081.	1.8	26
30	Glycosaminoglycanomics of Cultured Cells Using a Rapid and Sensitive LC-MS/MS Approach. ACS Chemical Biology, 2015, 10, 1303-1310.	1.6	58
31	Heavy Chain Transfer by Tumor Necrosis Factor-stimulated Gene 6 to the Bikunin Proteoglycan. Journal of Biological Chemistry, 2015, 290, 5156-5166.	1.6	11
32	Analysis of Total Human Urinary Glycosaminoglycan Disaccharides by Liquid Chromatography–Tandem Mass Spectrometry. Analytical Chemistry, 2015, 87, 6220-6227.	3.2	73
33	High Cell Density Cultivation of Recombinant Escherichia coli Strains Expressing 2-O-Sulfotransferase and C5-Epimerase for the Production of Bioengineered Heparin. Applied Biochemistry and Biotechnology, 2015, 175, 2986-2995.	1.4	17
34	Profiling pneumococcal type 3-derived oligosaccharides by high resolution liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2015, 1397, 43-51.	1.8	9
35	Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metabolic Engineering, 2015, 29, 217-226.	3.6	159
36	Investigating changes in the gas-phase conformation of Antithrombin III upon binding of Arixtra using traveling wave ion mobility spectrometry (TWIMS). Analyst, The, 2015, 140, 6980-6989.	1.7	24

#	Article	IF	CITATIONS
37	Synthesis, morphology and spectroscopic properties of red-luminescent rhombohedral YOF: Yb ³⁺ , Er ³⁺ powders. RSC Advances, 2015, 5, 77673-77681.	1.7	17
38	Circulating Endothelial Glycocalyx Fragments Impact Endothelial and Epithelial Repair after Septic Lung Injury. FASEB Journal, 2015, 29, 863.9.	0.2	0
39	Compositional analysis and structural elucidation of glycosaminoglycans in chicken eggs. Glycoconjugate Journal, 2014, 31, 593-602.	1.4	27
40	Microarray platform affords improved product analysis in mammalian cell growth studies. Biotechnology Journal, 2014, 9, 386-395.	1.8	7
41	The Circulating Glycosaminoglycan Signature of Respiratory Failure in Critically Ill Adults. Journal of Biological Chemistry, 2014, 289, 8194-8202.	1.6	121
42	Fibroblast Growth Factor-based Signaling through Synthetic Heparan Sulfate Blocks Copolymers Studied Using High Cell Density Three-dimensional Cell Printing. Journal of Biological Chemistry, 2014, 289, 9754-9765.	1.6	26
43	Analysis of 3-O-sulfo group-containing heparin tetrasaccharides in heparin by liquid chromatography–mass spectrometry. Analytical Biochemistry, 2014, 455, 3-9.	1.1	36
44	Assays for determining heparan sulfate and heparin O-sulfotransferase activity and specificity. Analytical and Bioanalytical Chemistry, 2014, 406, 525-536.	1.9	17
45	Homogeneous low-molecular-weight heparins with reversible anticoagulant activity. Nature Chemical Biology, 2014, 10, 248-250.	3.9	173
46	Fluorous-Assisted Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides. Organic Letters, 2014, 16, 2240-2243.	2.4	54
47	Design and Kinetic Analysis of a Hybrid Promoter–Regulator System for Malonyl-CoA Sensing in <i>Escherichia coli</i> . ACS Chemical Biology, 2014, 9, 451-458.	1.6	123
48	Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11299-11304.	3.3	423
49	Crystal growth, spectroscopic properties and energy levels of Cr ³⁺ :Li ₂ Mg ₂ (WO ₄) ₃ : a candidate for broadband laser application. RSC Advances, 2014, 4, 37041.	1.7	21
50	Method to Detect Contaminants in Heparin Using Radical Depolymerization and Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 2014, 86, 326-330.	3.2	32
51	Capillary electrophoresis for total glycosaminoglycan analysis. Analytical and Bioanalytical Chemistry, 2014, 406, 4617-4626.	1.9	33
52	High-Field Asymmetric-Waveform Ion Mobility Spectrometry and Electron Detachment Dissociation of Isobaric Mixtures of Glycosaminoglycans. Journal of the American Society for Mass Spectrometry, 2014, 25, 258-268.	1.2	64
53	Bottom-Up Low Molecular Weight Heparin Analysis Using Liquid Chromatography-Fourier Transform Mass Spectrometry for Extensive Characterization. Analytical Chemistry, 2014, 86, 6626-6632.	3.2	70
54	Carbohydrate-Containing Molecules as Potential Biomarkers in Colon Cancer. OMICS A Journal of Integrative Biology, 2014, 18, 231-241.	1.0	29

#	Article	IF	CITATIONS
55	Heparin stability by determining unsubstituted amino groups using hydrophilic interaction chromatography mass spectrometry. Analytical Biochemistry, 2014, 461, 46-48.	1.1	22
56	Toward the chemoenzymatic synthesis of heparan sulfate oligosaccharides: oxidative cleavage of p-nitrophenyl group with ceric ammonium salts. Tetrahedron Letters, 2013, 54, 4471-4474.	0.7	18
57	Internal Disulfide Bond Acts as a Switch for Intein Activity. Biochemistry, 2013, 52, 5920-5927.	1.2	30
58	Ultrasensitive Detection and Quantification of Acidic Disaccharides Using Capillary Electrophoresis and Quantum Dot-Based Fluorescence Resonance Energy Transfer. Analytical Chemistry, 2013, 85, 9356-9362.	3.2	25
59	N-Sulfotestosteronan, A Novel Substrate for Heparan Sulfate 6-O-Sulfotransferases and its Analysis by Oxidative Degradation. Biopolymers, 2013, 99, 675-685.	1.2	5
60	Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin. Journal of Biotechnology, 2013, 167, 241-247.	1.9	25
61	Structural Characterization of Pharmaceutical Heparins Prepared from Different Animal Tissues. Journal of Pharmaceutical Sciences, 2013, 102, 1447-1457.	1.6	99
62	Neutralizing the anticoagulant activity of ultraâ€lowâ€molecularâ€weight heparins using <i>N</i> â€acetylglucosamine 6â€sulfatase. FEBS Journal, 2013, 280, 2523-2532.	2.2	8
63	Crystal growth, spectral properties and crystal field analysis of Cr3+:MgWO4. CrystEngComm, 2013, 15, 6083.	1.3	25
64	On-line separation and characterization of hyaluronan oligosaccharides derived from radical depolymerization. Carbohydrate Polymers, 2013, 96, 503-509.	5.1	16
65	Growth, structure and optical properties of a nonlinear optical crystal α-LaBMoO6. CrystEngComm, 2013, 15, 5245.	1.3	14
66	High cell density cultivation of a recombinant E. coli strain expressing a key enzyme in bioengineered heparin production. Applied Microbiology and Biotechnology, 2013, 97, 3893-3900.	1.7	37
67	Sequence Analysis and Domain Motifs in the Porcine Skin Decorin Glycosaminoglycan Chain. Journal of Biological Chemistry, 2013, 288, 9226-9237.	1.6	23
68	Structurally Informative Tandem Mass Spectrometry of Highly Sulfated Natural and Chemoenzymatically Synthesized Heparin and Heparan Sulfate Glycosaminoglycans. Molecular and Cellular Proteomics, 2013, 12, 979-990.	2.5	39
69	Isolation of bovine corneal keratan sulfate and its growth factor and morphogen binding. FEBS Journal, 2013, 280, 2285-2293.	2.2	51
70	Signal Amplification by Glycoâ€qPCR for Ultrasensitive Detection of Carbohydrates: Applications in Glycobiology. Angewandte Chemie - International Edition, 2012, 51, 11800-11804.	7.2	21
71	Proteoglycan sequence. Molecular BioSystems, 2012, 8, 1613.	2.9	95
72	Complete Mass Spectral Characterization of a Synthetic Ultralow-Molecular-Weight Heparin Using Collision-Induced Dissociation. Analytical Chemistry, 2012, 84, 5475-5478.	3.2	75

#	Article	IF	CITATIONS
73	Intramolecular Disulfide Bond between Catalytic Cysteines in an Intein Precursor. Journal of the American Chemical Society, 2012, 134, 2500-2503.	6.6	44
74	Iminosugar-based inhibitors of glucosylceramide synthase prolong survival but paradoxically increase brain glucosylceramide levels in Niemann–Pick C mice. Molecular Genetics and Metabolism, 2012, 105, 621-628.	0.5	59
75	Top-Down Approach for the Direct Characterization of Low Molecular Weight Heparins Using LC-FT-MS. Analytical Chemistry, 2012, 84, 8822-8829.	3.2	103
76	Growth, Mechanical, Thermal and Spectral Properties of Cr3+â^¶MgMoO4 Crystal. PLoS ONE, 2012, 7, e30327.	1.1	13
77	Systemic Delivery of a Glucosylceramide Synthase Inhibitor Reduces CNS Substrates and Increases Lifespan in a Mouse Model of Type 2 Gaucher Disease. PLoS ONE, 2012, 7, e43310.	1.1	70
78	Crystal growth and spectral properties of Nd3+:Ca9Gd(VO4)7 crystal. Journal of Crystal Growth, 2011, 314, 331-335.	0.7	20
79	Iminosugar-Based Inhibitors of Glucosylceramide Synthase Increase Brain Glycosphingolipids and Survival in a Mouse Model of Sandhoff Disease. PLoS ONE, 2011, 6, e21758.	1.1	61
80	Quantitative Proteomic and Microarray Analysis of the ArchaeonMethanosarcinaacetivoransGrown with Acetate versus Methanol. Journal of Proteome Research, 2007, 6, 759-771.	1.8	93
81	A New Algorithm Using Cross-Assignment for Label-Free Quantitation with LCâ^'LTQ-FT MS. Journal of Proteome Research, 2007, 6, 2186-2194.	1.8	49
82	New Algorithm for15N/14N Quantitation with LCâ^'ESIâ^'MS Using an LTQ-FT Mass Spectrometer. Journal of Proteome Research, 2006, 5, 2039-2045.	1.8	32
83	An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17921-17926.	3.3	119
84	Kinase Activity of Overexpressed HipA Is Required for Growth Arrest and Multidrug Tolerance in Escherichia coli. Journal of Bacteriology, 2006, 188, 8360-8367.	1.0	181
85	Electron Transport in the Pathway of Acetate Conversion to Methane in the Marine Archaeon Methanosarcina acetivorans. Journal of Bacteriology, 2006, 188, 702-710.	1.0	122
86	Proteome ofMethanosarcinaacetivoransPart I:Â An Expanded View of the Biology of the Cell. Journal of Proteome Research, 2005, 4, 112-128.	1.8	40
87	Proteome ofMethanosarcinaacetivoransPart II:Â Comparison of Protein Levels in Acetate- and Methanol-Grown Cells. Journal of Proteome Research, 2005, 4, 129-135.	1.8	41