## Thomas D Fox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12084880/publications.pdf

Version: 2024-02-01

|   |          |                | 126907       | 149698         |
|---|----------|----------------|--------------|----------------|
| ı | 58       | 4,083          | 33           | 56             |
|   | papers   | citations      | h-index      | g-index        |
| ı |          |                |              |                |
|   |          |                |              |                |
|   |          |                |              |                |
|   | 58       | 58             | 58           | 1986           |
|   | all docs | docs citations | times ranked | citing authors |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Cox1 C-terminal domain is a central regulator of cytochrome c oxidase biogenesis in yeast mitochondria. Journal of Biological Chemistry, 2017, 292, 10912-10925.                                                                                      | 3.4  | 25        |
| 2  | Multiple Roles of the Cox20 Chaperone in Assembly of <i>Saccharomyces cerevisiae</i> Cytochrome <i>c</i> Oxidase. Genetics, 2012, 190, 559-567.                                                                                                           | 2.9  | 30        |
| 3  | An MBoC Favorite: Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Molecular Biology of the Cell, 2012, 23, 4144-4144. | 2.1  | 1         |
| 4  | Mitochondrial Protein Synthesis, Import, and Assembly. Genetics, 2012, 192, 1203-1234.                                                                                                                                                                    | 2.9  | 177       |
| 5  | Schizosaccharomyces pombe homologs of the Saccharomyces cerevisiae mitochondrial proteins Cbp6 and Mss51 function at a post-translational step of respiratory complex biogenesis. Mitochondrion, 2012, 12, 381-390.                                       | 3.4  | 17        |
| 6  | Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation. Nature Reviews Molecular Cell Biology, 2011, 12, 14-20.                                                                                                             | 37.0 | 182       |
| 7  | The Carboxyl-terminal End of Cox1 Is Required for Feedback Assembly Regulation of Cox1 Synthesis in Saccharomyces cerevisiae Mitochondria. Journal of Biological Chemistry, 2010, 285, 34382-34389.                                                       | 3.4  | 38        |
| 8  | Dual Functions of Mss51 Couple Synthesis of Cox1 to Assembly of Cytochrome <i>c</i> Oxidase in <i>Saccharomyces cerevisiae</i> Mitochondria. Molecular Biology of the Cell, 2009, 20, 4371-4380.                                                          | 2.1  | 80        |
| 9  | Translocation and Assembly of Mitochondrially Coded <i>Saccharomyces cerevisiae</i> Cytochrome <i>c</i> Oxidase Subunit Cox2 by Oxa1 and Yme1 in the Absence of Cox18. Genetics, 2009, 182, 519-528.                                                      | 2.9  | 36        |
| 10 | Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes.<br>Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 60-70.                                                                              | 4.1  | 74        |
| 11 | Translocation of Mitochondrially Synthesized Cox2 Domains from the Matrix to the Intermembrane Space. Molecular and Cellular Biology, 2007, 27, 4664-4673.                                                                                                | 2.3  | 41        |
| 12 | Aberrant Translation of CytochromecOxidase Subunit 1 mRNA Species in the Absence of Mss51p in the YeastSaccharomyces cerevisiae. Molecular Biology of the Cell, 2007, 18, 523-535.                                                                        | 2.1  | 54        |
| 13 | Translation Initiation in Saccharomyces cerevisiae Mitochondria: Functional Interactions Among Mitochondrial Ribosomal Protein Rsm28p, Initiation Factor 2, Methionyl-tRNA-Formyltransferase and Novel Protein Rmd9p. Genetics, 2007, 175, 1117-1126.     | 2.9  | 33        |
| 14 | Genetic Transformation of Saccharomyces cerevisiae and Chlamydomonas reinhardtii Mitochondria.<br>Methods in Cell Biology, 2007, 80, 525-548.                                                                                                             | 1.1  | 42        |
| 15 | Overexpression of the <i>COX2</i> translational activator, Pet111p, prevents translation of <i>COX1</i> mRNA and cytochrome <i>c</i> oxidase assembly in mitochondria of <i>Saccharomyces cerevisiae</i> Molecular Microbiology, 2005, 56, 1689-1704.     | 2.5  | 24        |
| 16 | Alteration of a Novel Dispensable Mitochondrial Ribosomal Small-Subunit Protein, Rsm28p, Allows Translation of Defective COX2 mRNAs. Eukaryotic Cell, 2005, 4, 337-345.                                                                                   | 3.4  | 15        |
| 17 | MrpL36p, a Highly Diverged L31 Ribosomal Protein Homolog With Additional Functional Domains in Saccharomyces cerevisiae Mitochondria. Genetics, 2004, 167, 65-75.                                                                                         | 2.9  | 14        |
| 18 | Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p. EMBO Journal, 2003, 22, 5951-5961.                                                                                                                              | 7.8  | 167       |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evidence that Synthesis of the Saccharomyces cerevisiae Mitochondrially Encoded Ribosomal Protein Var1p May Be Membrane Localized. Eukaryotic Cell, 2003, 2, 651-653.                                                     | 3.4 | 27        |
| 20 | Interactions amongCOX1,COX2, andCOX3mRNA-specific Translational Activator Proteins on the Inner Surface of the Mitochondrial Inner Membrane ofSaccharomyces cerevisiae. Molecular Biology of the Cell, 2003, 14, 324-333. | 2.1 | 140       |
| 21 | Antagonistic signals within the COX2 mRNA coding sequence control its translation in Saccharomyces cerevisiae mitochondria. Rna, 2003, 9, 419-431.                                                                        | 3.5 | 19        |
| 22 | Activity of Mitochondrially Synthesized Reporter Proteins Is Lower Than That of Imported Proteins and Is Increased by Lowering cAMP in Glucose-Grown Saccharomyces cerevisiae Cells. Genetics, 2003, 165, 961-974.        | 2.9 | 13        |
| 23 | Cox18p Is Required for Export of the Mitochondrially EncodedSaccharomyces cerevisiaeCox2p C-Tail and Interacts with Pnt1p and Mss2p in the Inner Membrane. Molecular Biology of the Cell, 2002, 13, 1122-1131.            | 2.1 | 105       |
| 24 | Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods in Enzymology, 2002, 350, 97-111.                                                                                                                | 1.0 | 16        |
| 25 | Expression of green fluorescent protein from a recoded gene inserted into Saccharomyces cerevisiae mitochondrial DNA. Mitochondrion, 2001, 1, 181-189.                                                                    | 3.4 | 30        |
| 26 | Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods in Cell Biology, 2001, 65, 381-396.                                                                                                              | 1.1 | 75        |
| 27 | Mitochondrial Translation of Saccharomyces cerevisiae COX2 mRNA Is Controlled by the Nucleotide Sequence Specifying the Pre-Cox2p Leader Peptide. Molecular and Cellular Biology, 2001, 21, 2359-2372.                    | 2.3 | 62        |
| 28 | Pet111p, an Inner Membrane-bound Translational Activator That Limits Expression of the Saccharomyces cerevisiaeMitochondrial Gene COX2. Journal of Biological Chemistry, 2001, 276, 6392-6397.                            | 3.4 | 79        |
| 29 | Peripheral Mitochondrial Inner Membrane Protein, Mss2p, Required for Export of the Mitochondrially Coded Cox2p C Tail in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2001, 21, 7663-7672.                   | 2.3 | 42        |
| 30 | Highly Diverged Homologs of Saccharomyces cerevisiae Mitochondrial mRNA-Specific Translational Activators Have Orthologous Functions in Other Budding Yeasts. Genetics, 2000, 154, 999-1012.                              | 2.9 | 33        |
| 31 | Mutations Affecting a Yeast Mitochondrial Inner Membrane Protein, Pnt1p, Block Export of a<br>Mitochondrially Synthesized Fusion Protein from the Matrix. Molecular and Cellular Biology, 1999,<br>19, 6598-6607.         | 2.3 | 56        |
| 32 | Functional Interactions between Yeast Mitochondrial Ribosomes and mRNA 5′ Untranslated Leaders.<br>Molecular and Cellular Biology, 1998, 18, 1826-1834.                                                                   | 2.3 | 60        |
| 33 | Deletion of the Leader Peptide of the Mitochondrially Encoded Precursor of Saccharomyces cerevisiae Cytochrome c Oxidase Subunit II. Genetics, 1997, 145, 903-910.                                                        | 2.9 | 18        |
| 34 | In Vivo Analysis of Saccharomyces cerevisiae COX2 mRNA 5′-Untranslated Leader Functions in Mitochondrial Translation Initiation and Translational Activation. Genetics, 1997, 147, 87-100.                                | 2.9 | 60        |
| 35 | [21] Genetic strategies for identification of mitochondrial translation factors in Saccharomyces cerevisiae. Methods in Enzymology, 1996, 264, 228-237.                                                                   | 1.0 | 3         |
| 36 | A point mutation in the 5?-untranslated leader that affects translational activation of the mitochondrial COX 3 mRNA. Current Genetics, 1995, 28, 60-66.                                                                  | 1.7 | 16        |

| #  | Article                                                                                                                                                                                                                 | IF          | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 37 | Relocation of the unusual $i>VAR1$ gene from the mitochondrion to the nucleus. Biochemistry and Cell Biology, 1995, 73, 987-995.                                                                                        | 2.0         | 31        |
| 38 | PET112, a Saccharomyces cerevisiae nuclear gene required to maintain rho + mitochondrial DNA. Current Genetics, 1994, 25, 299-304.                                                                                      | 1.7         | 32        |
| 39 | Reduced but accurate translation from a mutant AUA initiation codon in the mitochondrial COX2 mRNA of Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1994, 242, 383-390.                                    | 2.4         | 48        |
| 40 | Positive Control of Translation in Organellar Genetic Systems. , 1993, , 157-166.                                                                                                                                       |             | 3         |
| 41 | Suppression of carboxy-terminal truncations of the yeast mitochondrial mRNA-specific translational activator PET122 by mutations in two new genes, MRP17 and PET127. Molecular Genetics and Genomics, 1992, 235, 64-73. | 2.4         | 46        |
| 42 | [10] Analysis and manipulation of yeast mitochondrial genes. Methods in Enzymology, 1991, 194, 149-165.                                                                                                                 | 1.0         | 241       |
| 43 | Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature, 1990, 346, 376-379.                                                                                                                 | 27.8        | 259       |
| 44 | Organelle transformation: Shoot first, ask questions later. Trends in Biochemical Sciences, 1990, 15, 465-468.                                                                                                          | <b>7.</b> 5 | 47        |
| 45 | Control of Mitochondrial Gene Expression in Saccharomyces Cerevisiae. Annual Review of Genetics, 1990, 24, 91-108.                                                                                                      | 7.6         | 268       |
| 46 | Translation in Yeast Mitochondria: A Review of General Features and a Case of mRNA-Specific Positive Control., 1990,, 411-420.                                                                                          |             | 0         |
| 47 | Substitution of an invariant nucleotide at the base of the highly conserved â€~530–loop' of 15S rRNA causes suppression of yeast mitochondrial ochre mutations. Nucleic Acids Research, 1989, 17, 4535-4539.            | 14.5        | 75        |
| 48 | The yeast nuclear gene CBS1 is required for translation of mitochondrial mRNAs bearing the cob 5′ untranslated leader. Molecular Genetics and Genomics, 1987, 206, 45-50.                                               | 2.4         | 90        |
| 49 | <i>PET1111</i> , a <i>Saccharomyces cerevisiae</i> Nuclear Gene Required for Translation of the Mitochondrial mRNA Encoding Cytochrome <i>c</i> Oxidase Subunit II. Genetics, 1987, 115, 637-647.                       | 2.9         | 152       |
| 50 | Mitochondrial genome rearrangement leads to extension and relocation of the cytochrome c oxidase subunit I gene in sorghum. Cell, 1986, 47, 567-576.                                                                    | 28.9        | 126       |
| 51 | Molecular genetic: Diverged genetic codes in protozoans and a bacterium. Nature, 1985, 314, 132-133.                                                                                                                    | 27.8        | 25        |
| 52 | Molecular biology: Multiple forms of mitochondrial DNA in higher plants. Nature, 1984, 307, 415-415.                                                                                                                    | 27.8        | 4         |
| 53 | A nuclear mutation that post-transcriptionally blocks accumulation of a yeast mitochondrial gene product can be suppressed by a mitochondrial gene rearrangement. Journal of Molecular Biology, 1984, 175, 431-452.     | 4.2         | 130       |
| 54 | Migratory DNA: Mitochondrial genes in the nucleus. Nature, 1983, 301, 371-372.                                                                                                                                          | 27.8        | 26        |

## THOMAS D FOX

| #  | Article                                                                                                                                                                                     | IF   | CITATION |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|
| 55 | The maxicircle of Trypanosoma brucei kinetoplast DNA hybridizes with a mitochondrial gene encoding cytochrome oxidase subunit II. Molecular and Biochemical Parasitology, 1982, 5, 381-390. | 1.1  | 19       |
| 56 | The zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell, 1981, 26, 315-323.                                  | 28.9 | 472      |
| 57 | Synthesis and processing of ribosomal RNA in isolated yeast mitochondria. Nucleic Acids Research, 1981, 9, 6379-6390.                                                                       | 14.5 | 24       |
| 58 | Genetic and physical analysis of the mitochondrial gene for subunit II of yeast cytochrome c oxidase. Journal of Molecular Biology, 1979, 130, 63-82.                                       | 4.2  | 61       |