Miklos Feher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12084783/publications.pdf

Version: 2024-02-01

331670 434195 2,169 31 21 31 citations h-index g-index papers 32 32 32 2987 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Discovery of Pyrazolo[1,5- <i>a</i>)]pyrimidine TTK Inhibitors: CFI-402257 is a Potent, Selective, Bioavailable Anticancer Agent. ACS Medicinal Chemistry Letters, 2016, 7, 671-675.	2.8	57
2	Design and optimization of (3-aryl-1 H -indazol-6-yl)spiro[cyclopropane-1,3′-indolin]-2′-ones as potent PLK4 inhibitors with oral antitumor efficacy. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4625-4630.	2.2	23
3	The Discovery of Orally Bioavailable Tyrosine Threonine Kinase (TTK) Inhibitors: 3-(4-(heterocyclyl)phenyl)-1 <i>H</i> -indazole-5-carboxamides as Anticancer Agents. Journal of Medicinal Chemistry, 2015, 58, 3366-3392.	6.4	43
4	The Discovery of Polo-Like Kinase 4 Inhibitors: Identification of (1 <i>R</i> ,2 <i>S</i>)-2-(3-((<i>E</i>)-4-(((<i>cis</i>)-2,6-Dimethylmorpholino)methyl)styryl)-1 <i>H</i> -indazol-6 (CFI-400945) as a Potent, Orally Active Antitumor Agent. Journal of Medicinal Chemistry, 2015, 58, 147-169.	5-yl)-5′- 6.4	methoxyspiro 118
5	The Discovery of Polo-Like Kinase 4 Inhibitors: Design and Optimization of Spiro[cyclopropane-1,3′[3 <i>H</i> Journal of Medicinal Chemistry, 2015, 58, 130-146.	6.4	89
6	Discovery of inhibitors of the mitotic kinase TTK based on N-(3-(3-sulfamoylphenyl)-1H-indazol-5-yl)-acetamides and carboxamides. Bioorganic and Medicinal Chemistry, 2014, 22, 4968-4997.	3.0	33
7	The Discovery of PLK4 Inhibitors: $(\langle i \rangle E \langle i \rangle)$ -3- $((1 \langle i \rangle H \langle i \rangle - Indazol$ -6-yl)methylene)indolin-2-ones as Novel Antiproliferative Agents. Journal of Medicinal Chemistry, 2013, 56, 6069-6087.	6.4	60
8	Numerical Errors in Minimization Based Binding Energy Calculations. Journal of Chemical Information and Modeling, 2012, 52, 3200-3212.	5.4	7
9	Numerical Errors and Chaotic Behavior in Docking Simulations. Journal of Chemical Information and Modeling, 2012, 52, 724-738.	5.4	37
10	Automated generation of turn mimetics: Proof of concept study for the MC4 receptor. Bioorganic and Medicinal Chemistry, 2012, 20, 3565-3574.	3.0	3
11	Abstract LB-215: Inhibition of Polo-like kinase 4 as an anti-cancer strategy. Cancer Research, 2011, 71, LB-215-LB-215.	0.9	7
12	Forecasting CYP2D6 and CYP3A4 Risk with a Global/Local Fusion Model of CYP450 Inhibition. Molecular Informatics, 2010, 29, 127-141.	2.5	4
13	Reducing Docking Score Variations Arising from Input Differences. Journal of Chemical Information and Modeling, 2010, 50, 1549-1560.	5.4	9
14	Global or Local QSAR: Is There a Way Out?. QSAR and Combinatorial Science, 2009, 28, 850-855.	1.4	18
15	Effect of Input Differences on the Results of Docking Calculations. Journal of Chemical Information and Modeling, 2009, 49, 1704-1714.	5.4	53
16	The effect of numerical error on the reproducibility of molecular geometry optimizations. Journal of Computer-Aided Molecular Design, 2008, 22, 39-51.	2.9	12
17	The use of ligand-based de novo design for scaffold hopping and sidechain optimization: Two case studies. Bioorganic and Medicinal Chemistry, 2008, 16, 422-427.	3.0	23
18	Selection, synthesis, and structure–activity relationship of tetrahydropyrido[4,3-d]pyrimidine-2,4-diones as human GnRH receptor antagonists. Bioorganic and Medicinal Chemistry, 2007, 15, 5590-5603.	3.0	36

#	Article	IF	CITATION
19	Novel 2D Fingerprints for Ligand-Based Virtual Screening. Journal of Chemical Information and Modeling, 2006, 46, 2423-2431.	5.4	71
20	The Use of Consensus Scoring in Ligand-Based Virtual Screening. Journal of Chemical Information and Modeling, 2006, 46, 277-288.	5.4	84
21	Consensus scoring for protein–ligand interactions. Drug Discovery Today, 2006, 11, 421-428.	6.4	215
22	Fuzzy Clustering as a Means of Selecting Representative Conformers and Molecular Alignments. Journal of Chemical Information and Computer Sciences, 2003, 43, 810-818.	2.8	39
23	Property Distributions:  Differences between Drugs, Natural Products, and Molecules from Combinatorial Chemistry. Journal of Chemical Information and Computer Sciences, 2003, 43, 218-227.	2.8	774
24	Property Distributions: Differences Between Drugs, Natural Products, and Molecules from Combinatorial Chemistry ChemInform, 2003, 34, no.	0.0	6
25	BHB:  A Simple Knowledge-Based Scoring Function to Improve the Efficiency of Database Screening. Journal of Chemical Information and Computer Sciences, 2003, 43, 1316-1327.	2.8	30
26	Synthesis and Evaluation of a Novel Nonsteroidal-Specific Endothelial Cell Proliferation Inhibitor. Journal of Medicinal Chemistry, 2003, 46, 1289-1292.	6.4	64
27	De Novo Design, Synthesis, and Evaluation of Novel Nonsteroidal Phenanthrene Ligands for the Estrogen Receptor. Journal of Medicinal Chemistry, 2003, 46, 1408-1418.	6.4	41
28	Flexible Alignment of Small Molecules. Journal of Medicinal Chemistry, 2001, 44, 1483-1490.	6.4	167
29	Metric and Multidimensional Scaling:  Efficient Tools for Clustering Molecular Conformations. Journal of Chemical Information and Computer Sciences, 2001, 41, 346-353.	2.8	17
30	Identifying potential binding modes and explaining partitioning behavior using flexible alignments and multidimensional scaling. Journal of Computer-Aided Molecular Design, 2001, 15, 1065-1083.	2.9	7
31	Multiple Flexible Alignment with SEAL:  A Study of Molecules Acting on the Colchicine Binding Site.	2.8	22