Zheng Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1208476/publications.pdf Version: 2024-02-01

ZHENC HUANC

#	Article	IF	CITATIONS
1	Catalytic Alkane Metathesis by Tandem Alkane Dehydrogenation-Olefin Metathesis. Science, 2006, 312, 257-261.	12.6	515
2	Advances in Base-Metal-Catalyzed Alkene Hydrosilylation. ACS Catalysis, 2017, 7, 1227-1243.	11.2	404
3	Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Science Advances, 2016, 2, e1501591.	10.3	268
4	Cobalt-Catalyzed Enantioselective Hydroboration of 1,1-Disubstituted Aryl Alkenes. Journal of the American Chemical Society, 2014, 136, 15501-15504.	13.7	267
5	Iron atalyzed, Atomâ€Economical, Chemo―and Regioselective Alkene Hydroboration with Pinacolborane. Angewandte Chemie - International Edition, 2013, 52, 3676-3680.	13.8	217
6	A Cobaltâ€Catalyzed Alkene Hydroboration with Pinacolborane. Angewandte Chemie - International Edition, 2014, 53, 2696-2700.	13.8	213
7	Phosphinite-Iminopyridine Iron Catalysts for Chemoselective Alkene Hydrosilylation. Journal of the American Chemical Society, 2013, 135, 19154-19166.	13.7	202
8	Base–Metalâ€Catalyzed Regiodivergent Alkene Hydrosilylations. Angewandte Chemie - International Edition, 2016, 55, 6671-6675.	13.8	177
9	Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation. Nature Chemistry, 2016, 8, 157-161.	13.6	175
10	Ligand exchanges and selective catalytic hydrogenation in molecular single crystals. Nature, 2010, 465, 598-601.	27.8	160
11	Selective Catalytic Transfer Dehydrogenation of Alkanes and Heterocycles by an Iridium Pincer Complex. Angewandte Chemie - International Edition, 2014, 53, 1390-1394.	13.8	154
12	Cobalt atalyzed Alkyne Hydrosilylation and Sequential Vinylsilane Hydroboration with Markovnikov Selectivity. Angewandte Chemie - International Edition, 2016, 55, 10839-10843.	13.8	141
13	Recent advances in tridentate iron and cobalt complexes for alkene and alkyne hydrofunctionalizations. Coordination Chemistry Reviews, 2019, 386, 138-153.	18.8	139
14	Asymmetric Synthesis of Siliconâ€Stereogenic Vinylhydrosilanes by Cobaltâ€Catalyzed Regio―and Enantioselective Alkyne Hydrosilylation with Dihydrosilanes. Angewandte Chemie - International Edition, 2018, 57, 6319-6323.	13.8	136
15	Coordination Polymers Assembled from Angular Dipyridyl Ligands and Cull, Cdll, CollSalts:Â Crystal Structures and Properties. Inorganic Chemistry, 2004, 43, 931-944.	4.0	135
16	Transfer Hydrogenation of Alkenes Using Ethanol Catalyzed by a NCP Pincer Iridium Complex: Scope and Mechanism. Journal of the American Chemical Society, 2018, 140, 4417-4429.	13.7	131
17	Highly Active and Recyclable Heterogeneous Iridium Pincer Catalysts for Transfer Dehydrogenation of Alkanes. Advanced Synthesis and Catalysis, 2009, 351, 188-206.	4.3	120
18	Olefin Isomerization by Iridium Pincer Catalysts. Experimental Evidence for an η ³ -Allyl Pathway and an Unconventional Mechanism Predicted by DFT Calculations. Journal of the American Chemical Society, 2012, 134, 13276-13295.	13.7	117

#	Article	IF	CITATIONS
19	Synthesis of 1,1,1-Tris(boronates) from Vinylarenes by Co-Catalyzed Dehydrogenative Borylations–Hydroboration. Journal of the American Chemical Society, 2015, 137, 15600-15603.	13.7	112
20	From Metallacyclophanes to 1-D Coordination Polymers:Â Role of Anions in Self-Assembly Processes of Copper(II) and 2,5-Bis(3-pyridyl)-1,3,4-oxadiazole. Inorganic Chemistry, 2003, 42, 552-559.	4.0	99
21	Cobalt atalyzed Alkyne Hydrosilylation and Sequential Vinylsilane Hydroboration with Markovnikov Selectivity. Angewandte Chemie, 2016, 128, 10997-11001.	2.0	96
22	Stereoselective Synthesis of Trisubstituted Alkenes via Cobalt-Catalyzed Double Dehydrogenative Borylations of 1-Alkenes. ACS Catalysis, 2017, 7, 6419-6425.	11.2	93
23	Cobalt-Catalyzed Regio- and Enantioselective Markovnikov 1,2-Hydrosilylation of Conjugated Dienes. ACS Catalysis, 2019, 9, 1612-1618.	11.2	89
24	Synthesis of 1,1-diboronate esters by cobalt-catalyzed sequential hydroboration of terminal alkynes. Organic Chemistry Frontiers, 2016, 3, 434-438.	4.5	84
25	Iridium-Catalyzed Selective α-Alkylation of Unactivated Amides with Primary Alcohols. Organic Letters, 2013, 15, 1144-1147.	4.6	82
26	Effect of Anions on the Framework Formation of Novel AgICoordination Polymers with Angular Bridging Ligands. Crystal Growth and Design, 2004, 4, 71-78.	3.0	81
27	Challenges and opportunities for alkane functionalisation using molecular catalysts. Chemical Science, 2018, 9, 288-299.	7.4	78
28	Iron-catalyzed asymmetric hydrosilylation of ketones. Chemical Communications, 2015, 51, 5073-5076.	4.1	77
29	An Agostic Iridium Pincer Complex as a Highly Efficient and Selective Catalyst for Monoisomerization of 1â€Alkenes to <i>trans</i> â€2â€Alkenes. Angewandte Chemie - International Edition, 2017, 56, 1614-1618.	13.8	76
30	Evaluation of Molybdenum and Tungsten Metathesis Catalysts for Homogeneous Tandem Alkane Metathesis. Organometallics, 2009, 28, 355-360.	2.3	74
31	Efficient Heterogeneous Dual Catalyst Systems for Alkane Metathesis. Advanced Synthesis and Catalysis, 2010, 352, 125-135.	4.3	73
32	Copper(I) Enolate Complexes in αâ€Arylation Reactions: Synthesis, Reactivity, and Mechanism. Angewandte Chemie - International Edition, 2012, 51, 1028-1032.	13.8	71
33	Iridium complexes of new NCP pincer ligands: catalytic alkane dehydrogenation and alkene isomerization. Chemical Communications, 2014, 50, 11056.	4.1	66
34	Site-Selective Acceptorless Dehydrogenation of Aliphatics Enabled by Organophotoredox/Cobalt Dual Catalysis. Journal of the American Chemical Society, 2021, 143, 16470-16485.	13.7	65
35	Pincer cobalt complex-catalyzed <i>Z</i> -selective hydrosilylation of terminal alkynes. Organic Chemistry Frontiers, 2017, 4, 1517-1521.	4.5	63
36	Ruthenium-Catalyzed Site-Selective Intramolecular Silylation of Primary C–H Bonds for Synthesis of Sila-Heterocycles. Journal of the American Chemical Society, 2017, 139, 11601-11609.	13.7	62

#	Article	IF	CITATIONS
37	A General and Mild Catalytic αâ€Alkylation of Unactivated Esters Using Alcohols. Angewandte Chemie - International Edition, 2015, 54, 4023-4027.	13.8	60
38	Asymmetric Synthesis of Silicon‣tereogenic Vinylhydrosilanes by Cobalt atalyzed Regio―and Enantioselective Alkyne Hydrosilylation with Dihydrosilanes. Angewandte Chemie, 2018, 130, 6427-6431.	2.0	60
39	Catalyst as colour indicator for endpoint detection to enable selective alkyne trans-hydrogenation with ethanol. Nature Catalysis, 2019, 2, 529-536.	34.4	55
40	Cobalt-Catalyzed Hydroboration and Borylation of Alkenes and Alkynes. Synlett, 2018, 29, 1421-1429.	1.8	54
41	Catalytic alkane dehydrogenations. Science Bulletin, 2015, 60, 1316-1331.	9.0	53
42	Synthesis of Pincer Hydrido Ruthenium Olefin Complexes for Catalytic Alkane Dehydrogenation. Organometallics, 2016, 35, 181-188.	2.3	53
43	Nâ~'H Activation of Hydrazines by Iridium(I). Double Nâ~'H Activation To Form Iridium Aminonitrene Complexes. Journal of the American Chemical Society, 2010, 132, 11458-11460.	13.7	52
44	A Pincer Ruthenium Complex for Regioselective C–H Silylation of Heteroarenes. Organic Letters, 2016, 18, 5624-5627.	4.6	46
45	Manganese-Catalyzed Asymmetric Hydrosilylation of Aryl Ketones. ACS Omega, 2017, 2, 4688-4692.	3.5	45
46	Syntheses, Structure, and Properties of the Metal Complexes with 3-(2-Pyridyl)pyrazole-Based Ligands: Tuning the Complex Structures by Ligand Modifications. Crystal Growth and Design, 2006, 6, 99-108.	3.0	44
47	Selective synthesis of secondary benzylic (Z)-allylboronates by Fe-catalyzed 1,4-hydroboration of 1-aryl-substituted 1,3-dienes. Organic Chemistry Frontiers, 2014, 1, 1101-1106.	4.5	44
48	Cationic Palladium(II) Complexes of Phosphine–Sulfonamide Ligands: Synthesis, Characterization, and Catalytic Ethylene Oligomerization. Organometallics, 2014, 33, 3738-3745.	2.3	42
49	An Amine-Assisted Ionic Monohydride Mechanism Enables Selective Alkyne <i>cis</i> -Semihydrogenation with Ethanol: From Elementary Steps to Catalysis. Journal of the American Chemical Society, 2021, 143, 4824-4836.	13.7	42
50	Identifying a cobalt catalyst for highly selective hydrosilylation of allenes. Organic Chemistry Frontiers, 2017, 4, 1829-1832.	4.5	41
51	Base–Metal atalyzed Regiodivergent Alkene Hydrosilylations. Angewandte Chemie, 2016, 128, 6783-6787.	2.0	39
52	Cobalt-Catalyzed Borylation of Aryl Halides and Pseudohalides. Organometallics, 2016, 35, 1559-1564.	2.3	39
53	Thermal, Catalytic Conversion of Alkanes to Linear Aldehydes and Linear Amines. Journal of the American Chemical Society, 2018, 140, 4157-4163.	13.7	37
54	A BEt ₃ -Base Catalyst for Amide Reduction with Silane. Journal of Organic Chemistry, 2019, 84, 6084-6093.	3.2	34

#	Article	IF	CITATIONS
55	Cobaltâ€Catalyzed Regio―and Stereoselective Hydroboration of Allenes. Angewandte Chemie - International Edition, 2020, 59, 6278-6283.	13.8	34
56	Mixed Diboration of Alkynes Catalyzed by LiOH: Regio- and Stereoselective Synthesis of <i>ci></i> 1,2-Diborylalkenes. Organic Letters, 2018, 20, 7363-7366.	4.6	32
57	Iron-Catalyzed Alkene Hydroboration with Pinacolborane. Synlett, 2013, 24, 1745-1747.	1.8	28
58	<i>n</i> -Alkanes to <i>n</i> -alcohols: Formal primary C─H bond hydroxymethylation via quadruple relay catalysis. Science Advances, 2020, 6, .	10.3	28
59	Catalytic alkane transfer-dehydrogenation by PSCOP iridium pincer complexes. Polyhedron, 2016, 116, 12-19.	2.2	27
60	A General, Practical Triethylboraneâ€Catalyzed Reduction of Carbonyl Functions to Alcohols. Chemistry - A European Journal, 2015, 21, 14737-14741.	3.3	26
61	Cobalt-Catalyzed Asymmetric Hydrogenation of Vinylsilanes with a Phosphine–Pyridine–Oxazoline Ligand: Synthesis of Optically Active Organosilanes and Silacycles. Organometallics, 2019, 38, 3906-3911.	2.3	26
62	Reactions of phosphinites with oxide surfaces: a new method for anchoring organic and organometallic complexes. Dalton Transactions, 2011, 40, 4268.	3.3	25
63	N-Bridged Pincer Iridium Complexes for Highly Efficient Alkane Dehydrogenation and the Relevant Linker Effects. ACS Catalysis, 2020, 10, 6475-6487.	11.2	25
64	A highly efficient catalytic α-alkylation of unactivated amides using primary alcohols. Tetrahedron Letters, 2016, 57, 2919-2921.	1.4	22
65	Pincer Iron Hydride Complexes for Alkene Isomerization: Catalytic Approach to Trisubstituted (<i>Z</i>)-Alkenyl Boronates. ACS Catalysis, 2021, 11, 10138-10147.	11.2	22
66	Ligand controlled cobalt catalyzed regiodivergent 1,2-hydroboration of 1,3-dienes. Science China Chemistry, 2019, 62, 336-340.	8.2	18
67	NCPâ€Type Pincer Iridium Complexes Catalyzed Transferâ€Dehydrogenation of Alkanes and Heterocycles â€. Chinese Journal of Chemistry, 2020, 38, 837-841.	4.9	18
68	Phosphine-Iminoquinoline Iron Complexes for Ethylene Polymerization and Copolymerization. Organometallics, 2017, 36, 3758-3764.	2.3	17
69	Iron-Catalyzed Regio- and Stereoselective Hydrosilylation of 1,3-Enynes To Access 1,3-Dienylsilanes. Organic Letters, 2021, 23, 2375-2379.	4.6	16
70	Iron Catalyzed Isomerization of <scp>αâ€Alkyl</scp> Styrenes to Access Trisubstituted Alkenes. Chinese Journal of Chemistry, 2021, 39, 585-589.	4.9	14
71	An Agostic Iridium Pincer Complex as a Highly Efficient and Selective Catalyst for Monoisomerization of 1â€Alkenes to <i>trans</i> â€2â€Alkenes. Angewandte Chemie, 2017, 129, 1636-1640.	2.0	13
72	Recent Advances in <scp>Coordinationâ€Insertion</scp> Copolymerization of Ethylene with Polar Functionalized Comonomers. Chinese Journal of Chemistry, 2020, 38, 1445-1448.	4.9	12

#	Article	IF	CITATIONS
73	Self-assembly of novel discrete binuclear molecular box structure from a novel bis-N,O-bidentate Schiff-base ligand and ZnII, CoII salts. Inorganic Chemistry Communication, 2005, 8, 194-198.	3.9	10
74	A New Phosphineâ€Amineâ€Oxazoline Ligand for Ruâ€Catalyzed Asymmetric Hydrogenation of <i>N</i> â€Phosphinylimines. Chinese Journal of Chemistry, 2018, 36, 1151-1155.	4.9	10
75	Pincer Iridium and Ruthenium Complexes for Alkane Dehydrogenation. , 2018, , 383-399.		10
76	Ruthenium-Catalyzed Hydrodefluorination with Silane as the Directing and Reducing Group. Organic Letters, 2020, 22, 9298-9302.	4.6	10
77	Cobaltâ€Catalyzed Regio―and Stereoselective Hydroboration of Allenes. Angewandte Chemie, 2020, 132, 6337-6342.	2.0	9
78	Synthesis and characterization of a tetradentate PNCP iridium complex for catalytic alkane dehydrogenation. Science China Chemistry, 2015, 58, 1340-1344.	8.2	8
79	A highly efficient cobalt-catalyzed deuterogenolysis of diboron: Synthesis of deuterated pinacolborane and vinylboronates. Tetrahedron, 2019, 75, 4138-4142.	1.9	8
80	Chiral Iridium Complexes of Anionic NCP Pincer Ligand for Asymmetric Transfer Hydrogenation of 1,1-Diarylethenes with Ethanol. Organic Letters, 2021, 23, 8978-8983.	4.6	8
81	Double-Linear Insertion Mode of α,ï‰-Dienes Enabled by Thio-imino-quinoline Iron Catalyst. ACS Catalysis, 2020, 10, 15092-15103.	11.2	7
82	Ru-Catalyzed Site-Selective Aliphatic C–H Bond Silylation of Amides and Carbamides. Organometallics, 2021, 40, 2365-2370.	2.3	7
83	Asymmetric Transfer Hydrogenation of Diaryl Ketones with Ethanol Catalyzed by Chiral <scp>NCP</scp> Pincer Iridium Complexes. Chinese Journal of Chemistry, 2022, 40, 1131-1136.	4.9	7
84	Dehydrogenation Based Asymmetric Epoxidation of Arylalkanes to Chiral Epoxides. Chinese Journal of Chemistry, 0, , .	4.9	7
85	Dehydrogenation of Primary Alkyl Azides to Nitriles Catalyzed by Pincer Iridium/Ruthenium Complexes. ChemCatChem, 2020, 12, 3661-3665.	3.7	6
86	Ruthenium-Catalyzed Dual Dehydrogenative Silylation of C(sp ³)–H Bonds: Access to Diverse Silicon-Centered Spirocycles. Organic Letters, 2021, 23, 7603-7607.	4.6	6
87	Pincer Ruthenium Catalyzed Intramolecular Silylation of C(sp2)–H Bonds. Synlett, 2017, 28, 2468-2472.	1.8	4
88	Undirected, Asymmetric Alkyl Group Functionalizations through Alkane Dehydrogenation. Organic Letters, 0, , .	4.6	3