Rufus Isaacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1208172/publications.pdf Version: 2024-02-01

		44042	24232
213	13,914	48	110
papers	citations	h-index	g-index
217	217	217	9111
all docs	docs citations	times ranked	citing authors

PHEUS ISAACS

#	Article	IF	CITATIONS
1	Responding to the US national pollinator plan: a case study in Michigan. Frontiers in Ecology and the Environment, 2022, 20, 84-92.	1.9	5
2	Experimental adaptation of native parasitoids to the invasive insect pest, Drosophila suzukii. Biological Control, 2022, 167, 104843.	1.4	11
3	Monitoring of Spotted-Wing Drosophila (Diptera: Drosophilidae) Resistance Status Using a RAPID Method for Assessing Insecticide Sensitivity Across the United States. Journal of Economic Entomology, 2022, 115, 1046-1053.	0.8	6
4	Grape Berry Moth Control in Concord Grape, 2021. Arthropod Management Tests, 2022, 47, .	0.1	0
5	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	1.5	19
6	Heat of the moment: extreme heat poses a risk to bee–plant interactions and crop yields. Current Opinion in Insect Science, 2022, 52, 100927.	2.2	8
7	Pesticide risk to managed bees during blueberry pollination is primarily driven by off-farm exposures. Scientific Reports, 2022, 12, 7189.	1.6	20
8	Wildflower plantings on fruit farms provide pollen resources and increase nesting by stem nesting bees. Agricultural and Forest Entomology, 2021, 23, 222-231.	0.7	2
9	Timing and order of different insecticide classes drive control of Drosophila suzukii; a modeling approach. Journal of Pest Science, 2021, 94, 743-755.	1.9	15
10	Efficacy of Miticticides to Reduce Grape Erineum Mite (GEM) Infestation in Vineyards, 2020. Arthropod Management Tests, 2021, 46, .	0.1	0
11	Cultural Control of Drosophila suzukii in Small Fruit—Current and Pending Tactics in the U.S Insects, 2021, 12, 172.	1.0	30
12	Behavioral and physiological responses of <scp><i>Drosophila melanogaster</i></scp> and <i>D. suzukii</i> to volatiles from plant essential oils. Pest Management Science, 2021, 77, 3698-3705.	1.7	22
13	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	1.2	43
14	Regional Variation in Captures of Male Paralobesia viteana (Lepidoptera: Tortricidae) in Monitoring Traps in Michigan Is Not Due to Geographical Variation in Male Response to Pheromone. Environmental Entomology, 2021, 50, 795-802.	0.7	1
15	Large ecosystem-scale effects of restoration fail to mitigate impacts of land-use legacies in longleaf pine savannas. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
16	Field and Laboratory Testing of Feeding Stimulants to Enhance Insecticide Efficacy Against Spotted-Wing Drosophila, <i>Drosophila suzukii</i> (Matsumura). Journal of Economic Entomology, 2021, 114, 1638-1646.	0.8	5
17	Optimization of a Larval Sampling Method for Monitoring <i>Drosophila suzukii</i> (Diptera:) Tj ETQq1 1 0.78	34314 rgBT 0.8	Overlock 10
	Identification of multiple adorant recentors essential for pyrathrum repellency in Drosophila		

¹⁸ Identification of multiple odorant receptors essential for pyrethrum repellency in Drosophila melanogaster. PLoS Genetics, 2021, 17, e1009677.

1.5 10

Rufus Isaacs

#	Article	IF	CITATIONS
19	Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination. Scientific Reports, 2021, 11, 16857.	1.6	31
20	<i>Drosophila suzukii</i> (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. Journal of Economic Entomology, 2021, 114, 1950-1974.	0.8	113
21	Honey bee (Apis mellifera) colonies benefit from grassland/ pasture while bumble bee (Bombus) Tj ETQq1 1 0.784 16, e0257701.	314 rgBT 1.1	/Overlock 1 7
22	Blueberry fruit quality and control of blueberry maggot (Rhagoletis mendax Curran) larvae after fumigation with sulfur dioxide. Postharvest Biology and Technology, 2021, 179, 111568.	2.9	7
23	Resampling of wild bees across fifteen years reveals variable species declines and recoveries after extreme weather. Agriculture, Ecosystems and Environment, 2021, 317, 107470.	2.5	11
24	Wild bees and natural enemies prefer similar flower species and respond to similar plant traits. Basic and Applied Ecology, 2021, 56, 259-269.	1.2	10
25	Farmland in U.S. Conservation Reserve Program has unique floral composition that promotes bee summer foraging. Basic and Applied Ecology, 2021, 56, 358-368.	1.2	10
26	Honey bee foraged pollen reveals temporal changes in pollen protein content and changes in forager choice for abundant versus high protein flowers. Agriculture, Ecosystems and Environment, 2021, 322, 107645.	2.5	10
27	Population genomics of <i>Drosophila suzukii</i> reveal longitudinal population structure and signals of migrations in and out of the continental United States. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	19
28	Integrated pest management can still deliver on its promise, with help from the bees. Proceedings of the United States of America, 2021, 118, e2118532118.	3.3	0
29	Exploring the Efficacy and Mechanisms of a Crop Sterilant for Reducing Infestation by Spotted-Wing Drosophila (Diptera: Drosophilidae). Journal of Economic Entomology, 2020, 113, 288-298.	0.8	5
30	Mulching as a cultural control strategy for <i>Drosophila suzukii</i> in blueberry. Pest Management Science, 2020, 76, 55-66.	1.7	22
31	Canopy thinning, not agricultural history, determines early responses of wild bees to longleaf pine savanna restoration. Restoration Ecology, 2020, 28, 138-146.	1.4	18
32	Leaching of insecticides used in blueberry production and their toxicity to red worm. Chemosphere, 2020, 241, 125091.	4.2	5
33	Evaluation of nonâ€ŧarget effects of OMRI <i>â€</i> listed insecticides for management of <i>Drosophila suzukii</i> Matsumura in berry crops. Journal of Applied Entomology, 2020, 144, 12-25.	0.8	15
34	Mismatched outcomes for biodiversity and ecosystem services: testing the responses of crop pollinators and wild bee biodiversity to habitat enhancement. Ecology Letters, 2020, 23, 326-335.	3.0	41
35	The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.	3.0	319
36	Seasonal polyphenism of spottedâ€wing <i>Drosophila</i> is affected by variation in local abiotic conditions within its invaded range, likely influencing survival and regional population dynamics. Ecology and Evolution, 2020, 10, 7669-7685.	0.8	16

4

#	Article	IF	CITATIONS
37	Insecticide residue longevity for onâ€site screening of Drosophila suzukii (Matsumura) resistance. Pest Management Science, 2020, 76, 2918-2924.	1.7	8
38	Flower traits associated with the visitation patterns of bees. Oecologia, 2020, 193, 511-522.	0.9	23
39	Efficacy of Foliar Applied Insecticides for Control of Blueberry Stem Gall Wasp, 2019. Arthropod Management Tests, 2020, 45, .	0.1	0
40	Pruning of small fruit crops can affect habitat suitability for Drosophila suzukii. Agriculture, Ecosystems and Environment, 2020, 294, 106860.	2.5	24
41	Stage-Specific and Seasonal Induction of the Overwintering Morph of Spotted Wing Drosophila (Diptera: Drosophilidae). Journal of Insect Science, 2019, 19, .	0.6	14
42	Screening Drought-Tolerant Native Plants for Attractiveness to Arthropod Natural Enemies in the U.S. Great Lakes Region. Environmental Entomology, 2019, 48, 1469-1480.	0.7	7
43	Laboratory and Field Evaluation of Host-Related Foraging Odor-Cue Combinations to Attract Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology, 2019, 112, 2850-2860.	0.8	21
44	Predicting Within- and Between-Year Variation in Activity of the Invasive Spotted Wing Drosophila (Diptera: Drosophilidae) in a Temperate Region. Environmental Entomology, 2019, 48, 1223-1233.	0.7	21
45	Interactions Between Biotic and Abiotic Factors Affect Survival in Overwintering <i>Drosophila suzukii</i> (Diptera: Drosophilidae). Environmental Entomology, 2019, 48, 454-464.	0.7	36
46	Habitat enhancements rescue bee body size from the negative effects of landscape simplification. Journal of Applied Ecology, 2019, 56, 2144-2154.	1.9	33
47	Behavioral and Physiological Resistance to Desiccation in Spotted Wing Drosophila (Diptera:) Tj ETQq1 1 0.7843	14.rgBT /C	Dverlock 10⊤
48	Narrow pollen diets are associated with declining Midwestern bumble bee species. Ecology, 2019, 100, e02697.	1.5	78
49	Biological Control of Spotted-Wing Drosophila (Diptera: Drosophilidae)—Current and Pending Tactics. Journal of Integrated Pest Management, 2019, 10, .	0.9	105
50	Evaluation of adjuvants to improve control of spottedâ€wing drosophila in organic fruit production. Journal of Applied Entomology, 2019, 143, 706-720.	0.8	5
51	Building resilience into agricultural pollination using wild pollinators. , 2019, , 109-134.		8
52	Evaluation of organic insecticides for management of spottedâ€wing drosophila (<i>Drosophila) Tj ETQq0 0 0 rg</i>	BT/Qverlo	ck ₃₇ 0 Tf 50 1
53	Impact of phagostimulants on effectiveness of OMRIâ€listed insecticides used for control of spottedâ€wing drosophila (<i>Drosophila suzukii</i> Matsumura). Journal of Applied Entomology, 2019, 143, 609-625.	0.8	22

Harvesting effects on wild bee communities in bioenergy grasslands depend on nesting guild.
1.8

Rufus Isaacs

#	Article	IF	CITATIONS
55	Spotted wing drosophila (Drosophila suzukii) utilization and dispersal from the wild host Asian bush honeysuckle (Lonicera spp.). Agricultural and Forest Entomology, 2019, 21, 149-158.	0.7	26
56	Blueberry IPM: Past Successes and Future Challenges. Annual Review of Entomology, 2019, 64, 95-114.	5.7	45
57	Development of a rapid assessment method for detecting insecticide resistance in spotted wing Drosophila (Drosophila suzukii Matsumura). Pest Management Science, 2019, 75, 1782-1793.	1.7	37
58	Landscape features determining the occurrence of Rhagoletis mendax (Diptera: Tephritidae) flies in blueberries. Agriculture, Ecosystems and Environment, 2018, 258, 113-120.	2.5	8
59	Comparative Antennal and Behavioral Responses of Summer and Winter Morph Drosophila suzukii (Diptera: Drosophilidae) to Ecologically Relevant Volatiles. Environmental Entomology, 2018, 47, 700-706.	0.7	27
60	Seasonal Occurrence of Key Arthropod Pests and Beneficial Insects in Michigan High Tunnel and Field Grown Raspberries. Environmental Entomology, 2018, 47, 567-574.	0.7	10
61	Entomological Opportunities and Challenges for Sustainable Viticulture in a Global Market. Annual Review of Entomology, 2018, 63, 193-214.	5.7	46
62	Rapid harvest schedules and fruit removal as non-chemical approaches for managing spotted wing Drosophila. Journal of Pest Science, 2018, 91, 219-226.	1.9	67
63	Efficacy of biopesticides on spotted wing drosophila, <i>Drosophila suzukii</i> Matsumura in fall red raspberries. Journal of Applied Entomology, 2018, 142, 26-32.	0.8	35
64	Baseline susceptibility of spotted wing Drosophila (<i>Drosophila suzukii</i>) to four key insecticide classes. Pest Management Science, 2018, 74, 78-87.	1.7	57
65	Restoration increases bee abundance and richness but not pollination in remnant and postâ€agricultural woodlands. Ecosphere, 2018, 9, e02435.	1.0	23
66	Limited phenological and dietary overlap between bee communities in spring flowering crops and herbaceous enhancements. Ecological Applications, 2018, 28, 1924-1934.	1.8	18
67	A Comparison of Drought-Tolerant Prairie Plants to Support Managed and Wild Bees in Conservation Programs. Environmental Entomology, 2018, 47, 1128-1142.	0.7	16
68	Our Native Bees: North America's Endangered Pollinators and the Fight to Save Them. American Entomologist, 2018, 64, 124-124.	0.1	0
69	Assessment of a commercial spider venom peptide against spotted-wing Drosophila and interaction with adjuvants. Journal of Pest Science, 2018, 91, 1279-1290.	1.9	17
70	Soil textures of nest partitions made by the mason bees Osmia lignaria and O. cornifrons (Hymenoptera: Megachilidae). Apidologie, 2018, 49, 464-472.	0.9	7
71	Evaluation of Nasonov Pheromone Dispensers for Pollinator Attraction in Apple, Blueberry, and Cherry. Journal of Economic Entomology, 2018, 111, 1658-1663.	0.8	3
72	Juice Grape Canopy Structure and Cluster Availability Do Not Reduce Middle- and Late-Season Captures of Male Paralobesia viteana (Lepidoptera: Totricidae) in Sex Pheromone Traps. Environmental Entomology, 2018, 47, 707-714.	0.7	2

#	Article	IF	CITATIONS
73	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	4.2	259
74	Does Passive Sampling Accurately Reflect the Bee (Apoidea: Anthophila) Communities Pollinating Apple and Sour Cherry Orchards?. Environmental Entomology, 2017, 46, 579-588.	0.7	71
75	Bumble bee colony growth and reproduction depend on local flower dominance and natural habitat area in the surrounding landscape. Biological Conservation, 2017, 206, 217-223.	1.9	39
76	Reduced ultraviolet light transmission increases insecticide longevity in protected culture raspberry production. Chemosphere, 2017, 189, 454-465.	4.2	21
77	Integrated Crop Pollination: Combining strategies to ensure stable and sustainable yields of pollination-dependent crops. Basic and Applied Ecology, 2017, 22, 44-60.	1.2	101
78	Diurnal Activity of Drosophila suzukii (Diptera: Drosophilidae) in Highbush Blueberry and Behavioral Response to Irrigation and Application of Insecticides. Environmental Entomology, 2017, 46, 1106-1114.	0.7	21
79	Control of Spotted Wing Drosophila in Blueberries, 2016*. Arthropod Management Tests, 2017, 42, .	0.1	4
80	The bees of Michigan (Hymenoptera: Apoidea: Anthophila), with notes on distribution, taxonomy, pollination, and natural history. Zootaxa, 2017, 4352, 1-160.	0.2	47
81	A Filter Method for Improved Monitoring of Drosophila suzukii (Diptera: Drosophilidae) Larvae in Fruit. Journal of Integrated Pest Management, 2017, 8, .	0.9	37
82	Tillage Reduces Survival of Grape Berry Moth (Lepidoptera: Tortricidae), via Burial Rather Than Mechanical Injury. Environmental Entomology, 2016, 46, nvw149.	0.7	4
83	Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production. PLoS ONE, 2016, 11, e0158937.	1.1	38
84	Drosophila suzukii population response to environment and management strategies. Journal of Pest Science, 2016, 89, 653-665.	1.9	90
85	Spatially Targeted Applications of Reduced-Risk Insecticides for Economical Control of Grape Berry Moth, <i>Paralobesia viteana</i> (Lepidoptera: Tortricidae). Journal of Economic Entomology, 2016, 109, 2168-2174.	0.8	6
86	Exclusion Netting Delays and Reduces <i>Drosophila suzukii</i> (Diptera: Drosophilidae) Infestation in Raspberries. Journal of Economic Entomology, 2016, 109, 2151-2158.	0.8	78
87	Earlier activity of Drosophila suzukii in high woodland landscapes but relative abundance is unaffected. Journal of Pest Science, 2016, 89, 725-733.	1.9	82
88	Modeling the status, trends, and impacts of wild bee abundance in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 140-145.	3.3	352
89	Curative activity contributes to control of spotted-wing drosophila (Diptera: Drosophilidae) and blueberry maggot (Diptera: Tephritidae) in highbush blueberry. Canadian Entomologist, 2015, 147, 109-117.	0.4	34
90	Control of Cranberry Fruitworm in Blueberry, 2014: Table 1. Arthropod Management Tests, 2015, 40, C16.	0.1	0

#	Article	IF	CITATIONS
91	Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecological Applications, 2015, 25, 2119-2131.	1.8	192
92	Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. Journal of Pest Science, 2015, 88, 469-494.	1.9	711
93	Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 2015, 6, 7414.	5.8	656
94	Multistate Comparison of Attractants for Monitoring Drosophila suzukii (Diptera: Drosophilidae) in Blueberries and Caneberries. Environmental Entomology, 2015, 44, 704-712.	0.7	137
95	Infestation of Wild and Ornamental Noncrop Fruits by Drosophila suzukii (Diptera: Drosophilidae). Annals of the Entomological Society of America, 2015, 108, 117-129.	1.3	250
96	Assessing the Economic Importance of <i>Dasineura oxycoccana</i> (Diptera: Cecidomyiidae) in Northern Highbush Blueberries. Journal of Economic Entomology, 2015, 108, 1910-1914.	0.8	4
97	Wildflower plantings enhance the abundance of natural enemies and their services in adjacent blueberry fields. Biological Control, 2015, 91, 94-103.	1.4	80
98	Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1652-1657.	3.3	366
99	Modeling Pollinator Community Response to Contrasting Bioenergy Scenarios. PLoS ONE, 2014, 9, e110676.	1.1	23
100	Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wildflowers. Basic and Applied Ecology, 2014, 15, 701-711.	1.2	125
101	Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biological Control, 2014, 75, 28-38.	1.4	130
102	Flower plantings increase wild bee abundance and the pollination services provided to a pollinationâ€dependent crop. Journal of Applied Ecology, 2014, 51, 890-898.	1.9	426
103	Exploring hostâ€associated differentiation in the <scp>N</scp> orth <scp>A</scp> merican native cranberry fruitworm, <i><scp>A</scp>crobasis vaccinii</i> , from blueberries and cranberries. Entomologia Experimentalis Et Applicata, 2014, 150, 136-148.	0.7	15
104	Genetic structure of cherry fruit fly (<i><scp>R</scp>hagoletis cingulata</i>) populations across managed, unmanaged, and natural habitats. Entomologia Experimentalis Et Applicata, 2014, 150, 157-165.	0.7	9
105	Relative Toxicity and Residual Activity of Insecticides Used in Blueberry Pest Management: Mortality of Natural Enemies. Journal of Economic Entomology, 2014, 107, 277-285.	0.8	84
106	<i><scp>D</scp>rosophila suzukii</i> in <scp>M</scp> ichigan vineyards, and the first report of <i><scp>Z</scp>aprionus indianus</i> from this region. Journal of Applied Entomology, 2014, 138, 519-527.	0.8	30
107	From research to action: enhancing crop yield through wild pollinators. Frontiers in Ecology and the Environment, 2014, 12, 439-447.	1.9	363
108	Landscape composition influences pollinators and pollination services in perennial biofuel plantings. Agriculture, Ecosystems and Environment, 2014, 193, 1-8.	2.5	68

#	Article	IF	CITATIONS
109	CONTROL OF BLUEBERRY MAGGOT AND SPOTTED WING DROSPHILA, 2013. Arthropod Management Tests, 2014, 39, .	0.1	0
110	Yield-Based Economic Thresholds for Grape Berry Moth (Lepidoptera: Tortricidae) in Juice Grapes. Journal of Economic Entomology, 2013, 106, 905-911.	0.8	3
111	Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Protection, 2013, 54, 126-133.	1.0	293
112	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	6.0	1,767
113	A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 2013, 16, 584-599.	3.0	875
114	Type and Distribution of Sensilla in the Antennae of the Red Clover Root Borer, <i>Hylastinus obscurus</i> . Journal of Insect Science, 2013, 13, 1-10.	0.9	20
115	Trap Designs for Monitoring <l>Drosophila suzukii</l> (Diptera: Drosophilidae). Environmental Entomology, 2013, 42, 1348-1355.	0.7	85
116	RESIDUAL ACTIVITY OF PYRETHROID INSECTICIDES AGAINST GRAPE BERRY MOTH, 2012. Arthropod Management Tests, 2013, 38, .	0.1	0
117	Big Brother is Watching: Studying Insect Predation in the Age of Digital Surveillance. American Entomologist, 2012, 58, 172-182.	0.1	50
118	Comparison of Three Dispenser Distribution Patterns for Pheromone Mating Disruption of <l>Paralobesia viteana</l> (Lepidoptera: Tortricidae) in Vineyards. Journal of Economic Entomology, 2012, 105, 936-942.	0.8	3
119	Rainfastness of Insecticides Used to Control Japanese Beetle in Blueberries. Journal of Economic Entomology, 2012, 105, 1688-1693.	0.8	12
120	Distribution and Phenology of <i>Dasineura oxycoccana</i> (Diptera: Cecidomyiidae) in Michigan Blueberries. Environmental Entomology, 2012, 41, 455-462.	0.7	14
121	Photosynthetic Performance of Pinot gris (<i>Vitis vinifera</i> L.) Grapevine Leaves in Response to Potato Leafhopper (<i>Empoasca fabae</i> Harris) Infestation. American Journal of Enology and Viticulture, 2012, 63, 357-366.	0.9	8
122	C14. Arthropod Management Tests, 2012, 37, .	0.1	0
123	C15. Arthropod Management Tests, 2012, 37, .	0.1	0
124	C19. Arthropod Management Tests, 2012, 37, .	0.1	1
125	Larger wildflower plantings increase natural enemy density, diversity, and biological control of sentinel prey, without increasing herbivore density. Ecological Entomology, 2012, 37, 386-394.	1.1	66
126	Status Update on Organic Blueberries in Michigan. International Journal of Fruit Science, 2012, 12, 232-245.	1.2	5

#	Article	IF	CITATIONS
127	Evaluation of Monitoring Traps for <i>Drosophila suzukii</i> (Diptera: Drosophilidae) in North America. Journal of Economic Entomology, 2012, 105, 1350-1357.	0.8	117
128	Dose–response relationships for the antifeedant effects of <i>Humulus lupulus</i> extracts against larvae and adults of the Colorado potato beetle. Pest Management Science, 2012, 68, 476-481.	1.7	23
129	Soil application of neonicotinoid insecticides for control of insect pests in wine grape vineyards. Pest Management Science, 2012, 68, 537-542.	1.7	19
130	Vineyard IPM in a Changing World: Adapting to New Pests, Tactics, and Challenges. , 2012, , 475-484.		4
131	Principles of Arthropod Pest Management in Vineyards. , 2012, , 1-16.		7
132	Pesticides for Arthropod Control in Vineyards. , 2012, , 53-90.		8
133	Biology and Management of Grape Berry Moth in North American Vineyard Ecosystems. , 2012, , 361-381.		7
134	Landscape structure and habitat management differentially influence insect natural enemies in an agricultural landscape. Agriculture, Ecosystems and Environment, 2012, 152, 40-49.	2.5	161
135	Predicting Flower Phenology and Viability of Highbush Blueberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 1291-1296.	0.5	13
136	Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees. Annals of Botany, 2011, 107, 1377-1390.	1.4	85
137	Influence of Native Flowering Plant Strips on Natural Enemies and Herbivores in Adjacent Blueberry Fields. Environmental Entomology, 2011, 40, 697-705.	0.7	47
138	ACTIVITY OF INSECTICIDES FOR CONTROL OF EUROPEAN FRUIT LECANIUM , 2010. Arthropod Management Tests, 2011, 36, .	0.1	0
139	EFFICACY OF INSECTICIDES W/WO SUPERIOR OIL FOR CONTROL OF A BLUEBERRY GALL WASP, 2010. Arthropod Management Tests, 2011, 36, .	0.1	1
140	GRAPE BERRY MOTH CONTROL IN CONCORD GRAPE, 2010. Arthropod Management Tests, 2011, 36, .	0.1	0
141	INSECTICIDE EFFICACY AGAINST CRANBERRY FRUITWORM LARVAE IN BLUEBERRIES, 2010. Arthropod Management Tests, 2011, 36, .	0.1	0
142	Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 2011, 14, 1062-1072.	3.0	681
143	Seasonal pattern of oviposition by the North American grape berry moth (Lepidoptera: Tortricidae). Journal of Applied Entomology, 2011, 135, 693-699.	0.8	1
144	Ovicidal, larvicidal and anti-ovipositional activities of Bifora radians and other plant extracts on the grape berry moth Paralobesia viteana (Clemens). Journal of Pest Science, 2011, 84, 487-493.	1.9	18

#	Article	IF	CITATIONS
145	Comparison of foliar and soil formulations of neonicotinoid insecticides for control of potato leafhopper, <i>Empoasca fabae</i> (Homoptera: Cicadellidae), in wine grapes. Pest Management Science, 2011, 67, 560-567.	1.7	22
146	Laboratory survival of <i>Drosophila suzukii</i> under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Management Science, 2011, 67, 1368-1374.	1.7	238
147	Behavioral Responses of Clover Root Borer to Long-Chain Fatty Acids From Young Red Clover (<i>Trifolium pratense</i>) Roots. Environmental Entomology, 2011, 40, 399-404.	0.7	27
148	Survival of Three Commercially Available Natural Enemies Exposed to Michigan Wildflowers. Environmental Entomology, 2011, 40, 1177-1182.	0.7	16
149	Rainfastness and Residual Activity of Insecticides to Control Japanese Beetle (Coleoptera:) Tj ETQq1 1 0.784314	rgBT/Over	lock 10 Tf 5
150	Response of Apple Maggot and Cherry Fruit Fly (Diptera: Tephritidae) to Color and Contrast Cues from Small Deposits. Journal of Entomological Science, 2010, 45, 65-74.	0.2	4
151	Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes. Bioenergy Research, 2010, 3, 6-19.	2.2	132
152	Sprayer type and water volume influence pesticide deposition and control of insect pests and diseases in juice grapes. Crop Protection, 2010, 29, 378-385.	1.0	64
153	Mechanically-applied wax matrix (SPLAT-GBM) for mating disruption of grape berry moth (Lepidoptera:) Tj ETQq	1 1 0 7843 1.0	14.rgBT /Ov
154	Pollination services provided to small and large highbush blueberry fields by wild and managed bees. Journal of Applied Ecology, 2010, 47, 841-849.	1.9	149
155	Transfer of life-history phenology from mothers to progeny in a solitary univoltine parasitoid. Physiological Entomology, 2010, 35, 192-195.	0.6	21
156	Community and Species-Specific Responses of Wild Bees to Insect Pest Control Programs Applied to a Pollinator-Dependent Crop. Journal of Economic Entomology, 2010, 103, 668-675.	0.8	37
157	Activity of Broad-Spectrum and Reduced-Risk Insecticides on Various Life Stages of Cranberry Fruitworm (Lepidoptera: Pyralidae) in Highbush Blueberry. Journal of Economic Entomology, 2010, 103, 1720-1728.	0.8	19
158	Weather During Bloom Affects Pollination and Yield of Highbush Blueberry. Journal of Economic Entomology, 2010, 103, 557-562.	0.8	96
159	Maximizing arthropodâ€mediated ecosystem services in agricultural landscapes: the role of native plants. Frontiers in Ecology and the Environment, 2009, 7, 196-203.	1.9	361
160	Susceptibility of Highbush Blueberry Cultivars to Cranberry Fruitworm and Japanese Beetle. International Journal of Fruit Science, 2009, 9, 23-34.	1.2	2
161	Monitoring and Temperature-Based Prediction of the Whitemarked Tussock Moth (Lepidoptera:) Tj ETQq1 1 0.7	84314 rgBT 0.8	[/Overlock
162	Reproductive Maturity of Cherry Fruit Fly (Diptera: Tephritidae) in Managed and Natural Habitats.	0.7	3

Environmental Entomology, 2009, 38, 955-961.

0.7

#	Article	IF	CITATIONS
163	Wild Bees (Hymenoptera: Apoidea: Anthophila) of the Michigan Highbush Blueberry Agroecosystem. Annals of the Entomological Society of America, 2009, 102, 275-287.	1.3	79
164	Control of Grape Berry Moth (Lepidoptera: Tortricidae) in Relation to Oviposition Phenology. Journal of Economic Entomology, 2009, 102, 692-698.	0.8	15
165	Paraffin Wax Emulsion for Increased Rainfastness of Insecticidal Bait to Control <i>Rhagoletis pomonella</i> (Diptera: Tephritidae). Journal of Economic Entomology, 2009, 102, 1108-1115.	0.8	8
166	Lethal and sublethal effects of chlorantraniliprole on three species of <i>Rhagoletis</i> fruit flies (Diptera: Tephritidae). Pest Management Science, 2009, 65, 137-143.	1.7	52
167	Elevated pan traps to monitor bees in flowering crop canopies. Entomologia Experimentalis Et Applicata, 2009, 131, 93-98.	0.7	79
168	Mating Disruption of Paralobesia viteana in Vineyards Using Pheromone Deployed in SPLAT-GBMâ,,¢ Wax Droplets. Journal of Chemical Ecology, 2008, 34, 1089-1095.	0.9	17
169	Visitation by Wild and Managed Bees (Hymenoptera: Apoidea) to Eastern U.S. Native Plants for Use in Conservation Programs. Environmental Entomology, 2008, 37, 707-718.	0.7	139
170	Reduced-risk Insecticides for Control of Grape Berry Moth (Lepidoptera: Tortricidae) and Conservation of Natural Enemies. Journal of Economic Entomology, 2007, 100, 855-865.	0.8	22
171	CONTROL OF CRANBERRY FRUITWORM AND CHERRY FRUITWORM, 2006. Arthropod Management Tests, 2007, 32, .	0.1	0
172	Habitat-Specific Flight Period in the Cherry Fruit Fly <i>Rhagoletis cingulata</i> (Loew) (Diptera:) Tj ETQq0 0 0 rg	BT/Overl 0.7	ock 10 Tf 50
173	Cutting Wild Grapevines as a Cultural Control Strategy for Grape Berry Moth (Lepidoptera:) Tj ETQq1 1 0.78431	4 rgBT /Ov	verlock 10 Tf
174	Lethal and Sublethal Activities of Imidacloprid Contribute to Control of Adult Japanese Beetle in Blueberries. Journal of Economic Entomology, 2007, 100, 1596-1603.	0.8	6
175	Reduced-risk insecticides for control of grape berry moth (Lepidoptera: Tortricidae) and conservation of natural enemies. Journal of Economic Entomology, 2007, 100, 855-65.	0.8	16
176	Behavioural response of Colorado potato beetle (Leptinotarsa decemlineata) larvae to selected plant extracts. Pest Management Science, 2006, 62, 1052-1057.	1.7	26
177	Behavioral Responses of <i>Rhagoletis cingulata</i> (Diptera: Tephritidae) to GF-120 Insecticidal Bait Enhanced with Ammonium Acetate. Journal of Economic Entomology, 2006, 99, 1316-1320.	0.8	5
178	Ground Covers Influence the Abundance and Behavior of Japanese Beetles. Environmental Entomology, 2006, 35, 789-796.	0.7	15
179	Survey of Japanese Beetle Management Practices in Michigan Highbush Blueberry Production. HortTechnology, 2006, 16, 83-88.	0.5	6
180	CONTROL OF GRAPE BERRY MOTH IN CONCORD GRAPE, 2004. Arthropod Management Tests, 2005, 30, .	0.1	2

#	Article	IF	CITATIONS
181	Effect of tillage on abundance of Japanese beetle, Popillia japonica Newman (Col., Scarabaeidae), larvae and adults in highbush blueberry fields. Journal of Applied Entomology, 2005, 129, 258-264.	0.8	23
182	Do plant cues influence the oviposition behavior of Japanese beetles?. Entomologia Experimentalis Et Applicata, 2005, 117, 165-174.	0.7	14
183	Integrative Biology: Sea Hares Saved by a Delicious Distraction. Current Biology, 2005, 15, R194-R196.	1.8	1
184	Ground predator abundance affects prey removal in highbush blueberry (Vaccinium corymbosum) fields and can be altered by aisle ground covers. BioControl, 2005, 50, 205-222.	0.9	32
185	Protection of Fruit Against Infestation by Apple Maggot and Blueberry Maggot (Diptera: Tephritidae) Using Compounds Containing Spinosad. Journal of Economic Entomology, 2005, 98, 432-437.	0.8	52
186	Stage-specific control of grape berry moth, <l>Endopiza viteana</l> (Clemens) (Lepidoptera:) Tj ETQq0 415-422.	0 0 rgBT 0.8	/Overlock 10 7
187	Seasonal Abundance of Ground Beetles in Highbush Blueberry (Vaccinium corymbosum) Fields and Response to a Reduced-Risk Insecticide Program. Environmental Entomology, 2005, 34, 378-384.	0.7	19
188	CONTROL OF THE MULTICOLORED ASIAN LADY BEETLE IN GRAPE, 2004. Arthropod Management Tests, 2005, 30, .	0.1	0
189	Stage-specific control of grape berry moth, Endopiza viteana (Clemens) (Lepidoptera: Tortricidae), by selective and broad-spectrum insecticides. Journal of Economic Entomology, 2005, 98, 415-422.	0.8	22
190	Raspberry Variety Performance in Southern Michigan. HortTechnology, 2005, 15, 716-721.	0.5	5
191	Influence of Uncultivated Habitats and Native Host Plants on Cluster Infestation by Grape Berry Moth, <l>Endopiza viteana</l> Clemens (Lepidoptera: Tortricidae), in Michigan Vineyards. Environmental Entomology, 2004, 33, 310-319.	0.7	19
192	Movement of the grape berry moth, Endopiza viteana: displacement distance and direction. Physiological Entomology, 2004, 29, 443-452.	0.6	19
193	Evaluation of New Approaches for Management of Japanese Beetles in Highbush Blueberries. International Journal of Fruit Science, 2004, 3, 349-360.	0.2	8
194	Activity of conventional and reduced-risk insecticides for protection of grapevines against the rose chafer, Macrodactylus subspinosus (Coleoptera: Scarabaeidae). Journal of Applied Entomology, 2004, 128, 371-376.	0.8	11
195	Foraging behavior and prey interactions by a guild of predators on various lifestages of Bemisia tabaci. Journal of Insect Science, 2004, 4, 1-13.	0.9	17
196	Potential Acaricides for Management of Blueberry Bud Mite in Michigan Blueberries. HortTechnology, 2004, 14, 188-191.	0.5	2
197	Distribution of Grape Berry Moth, <l>Endopiza viteana</l> (Lepidoptera: Tortricidae), in Natural and Cultivated Habitats. Environmental Entomology, 2003, 32, 1187-1195.	0.7	26
198	GRAPE, SEASON LONG BROAD SPECTRUM INSECT CONTROL, 2002. Arthropod Management Tests, 2003, 28, .	0.1	1

#	Article	IF	CITATIONS
199	Distribution of Egg and Larval Populations of Cranberry Fruitworm (Lepidoptera: Pyralidae) and Cherry Fruitworm (Lepidoptera: Tortricidae) in Highbush Blueberries. Environmental Entomology, 2002, 31, 852-858.	0.7	23
200	An Inexpensive, Accurate Method for Measuring Leaf Area and Defoliation Through Digital Image Analysis. Journal of Economic Entomology, 2002, 95, 1190-1194.	0.8	198
201	Performance of the Microsprayer, with Application for Pheromone-Mediated Control of Insect Pests. Journal of Economic Entomology, 1999, 92, 1157-1164.	0.8	23
202	Host plant evaluation behaviour ofBemisia tabaciand its modification by external or internal uptake of imidacloprid. Physiological Entomology, 1999, 24, 101-108.	0.6	22
203	Modulation of whitefly take-off and flight orientation by wind speed and visual cues. Physiological Entomology, 1999, 24, 311-318.	0.6	41
204	Phloem specific aphid resistance in Cucumis melo line AR 5: effects on feeding behaviour and performance of Aphis gossypii. Entomologia Experimentalis Et Applicata, 1998, 86, 79-88.	0.7	111
205	Aerial distribution, flight behaviour and eggload: their interâ€relationship during dispersal by the sweetpotato whitefly. Journal of Animal Ecology, 1998, 67, 741-750.	1.3	74
206	Feeding rates and carbohydrate metabolism by Bemisia tabaci (Homoptera: Aleyrodidae) on different quality phloem saps. Physiological Entomology, 1998, 23, 241-248.	0.6	37
207	Methyl salicylate and (â^)-(1R,5S)-myrtenal are plant-derived repellents for black bean aphid,Aphis fabae Scop. (Homoptera: Aphididae). Journal of Chemical Ecology, 1994, 20, 2847-2855.	0.9	154
208	Behavioural responses ofAphis fabaeto isothiocyanates in the laboratory and field. Pest Management Science, 1993, 39, 349-355.	0.6	20
209	Responses of the black bean aphid, Aphis fabae, to a non-host plant volatile in laboratory and field. , 1992, , 112-114.		1
210	Airfoil Theory for Rotary Wing Aircraft. Journal of the Aeronautical Sciences, 1946, 13, 218-220.	0.8	31
211	Manipulation of Natural Enemies in Agroecosystems: Habitat and Semiochemicals for Sustainable Insect Pest Control. , 0, , .		31
212	Pollen Use by Osmia lignaria (Hymenoptera: Megachilidae) in Highbush Blueberry Fields. Annals of the Entomological Society of America, 0, , .	1.3	4
213	Improving <i>Osmia lignaria</i> and <i>O. cornifrons</i> (Hymenoptera: Megachilidae) retention with preferred nest materials and attractant spray. Journal of Applied Entomology, 0, , .	0.8	2