Takashi Nagatani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12081695/publications.pdf

Version: 2024-02-01

36303 40979 10,413 287 51 93 citations h-index g-index papers 287 287 287 2187 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Chain reaction of traffic breakdowns in coupled-cycle networks. Physica A: Statistical Mechanics and Its Applications, 2022, 587, 126549.	2.6	13
2	Dynamic transition induced by route choice in two-route traffic network with onramp. Physica A: Statistical Mechanics and Its Applications, 2022, 596, 127219.	2.6	7
3	Traffic flow on star graph: Nonlinear diffusion. Physica A: Statistical Mechanics and Its Applications, 2021, 561, 125251.	2.6	14
4	Diffusively Coupled SIQRS Epidemic Spreading in Hierarchical Small-World Network. Journal of the Physical Society of Japan, 2021, 90, 013001.	1.6	6
5	Avalanche of Traffic Jams in Directed Ladder Network. Journal of the Physical Society of Japan, 2021, 90, 043801.	1.6	5
6	Effects of pest control on a food chain in patchy environment: Species-dependent activity range on multilayer graphs. BioSystems, 2021, 206, 104425.	2.0	1
7	Metapopulation dynamics on double graphs for mediated infectious disease in patchy environment. Physica A: Statistical Mechanics and Its Applications, 2021, 581, 126213.	2.6	2
8	Flattening Infection Curve by Movement Restriction in Hierarchical Small-World Network. Journal of the Physical Society of Japan, 2021, 90, .	1.6	1
9	Migration difference in diffusively-coupled prey–predator system on heterogeneous graphs. Physica A: Statistical Mechanics and Its Applications, 2020, 537, 122705.	2.6	6
10	Traffic flow stabilized by matching speed on network with a bottleneck. Physica A: Statistical Mechanics and Its Applications, 2020, 538, 122838.	2.6	20
11	Diffusively-Coupled Prey-Predator Dynamics in Scale-Free and Self-Similar Networks. Journal of the Physical Society of Japan, 2020, 89, 064003.	1.6	4
12	Diffusively-Coupled Rock-Paper-Scissors Game with Mutation in Scale-Free Hierarchical Networks. Complexity, 2020, 2020, 1-8.	1.6	6
13	Vehicular Traffic Through Signals in Hierarchical Small-World Directed Networks. Journal of the Physical Society of Japan, 2020, 89, 073001.	1.6	2
14	Traffic Flow in Scale-Free Hierarchical Directed Networks. Journal of the Physical Society of Japan, 2020, 89, 043002.	1.6	8
15	Traffic flow on percolation-backbone fractal. Chaos, Solitons and Fractals, 2020, 135, 109771.	5.1	17
16	Diffusively coupled Allee effect on heterogeneous and homogeneous graphs. Physica A: Statistical Mechanics and Its Applications, 2019, 521, 18-28.	2.6	5
17	Restricted migration of infected individuals in epidemic metapopulation model on double graphs. Physica A: Statistical Mechanics and Its Applications, 2019, 531, 121775.	2.6	2
18	Allee effect with time-varying migration on heterogeneous graphs. Physica A: Statistical Mechanics and Its Applications, 2019, 527, 121276.	2.6	8

#	Article	IF	CITATIONS
19	Complex Dynamics of Bus, Tram, and Elevator Delays in Transportation Systems. , 2019, , 593-612.		O
20	Diffusively coupled Lotka–Volterra system stabilized by heterogeneous graphs. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 1114-1123.	2.6	10
21	Infection promotes species coexistence: Rock–paper–scissors game with epidemic on graphs. Physica A: Statistical Mechanics and Its Applications, 2019, 535, 122531.	2.6	8
22	Metapopulation dynamics in the rock-paper-scissors game with mutation: Effects of time-varying migration paths. Journal of Theoretical Biology, 2019, 462, 425-431.	1.7	11
23	Epidemic spreading of random walkers in metapopulation model on an alternating graph. Physica A: Statistical Mechanics and Its Applications, 2019, 520, 350-360.	2.6	10
24	Metapopulation model for rock–paper–scissors game: Mutation affects paradoxical impacts. Journal of Theoretical Biology, 2018, 450, 22-29.	1.7	20
25	Multi-species coexistence in Lotka-Volterra competitive systems with crowding effects. Scientific Reports, 2018, 8, 1198.	3.3	42
26	Traffic jams induce dynamical phase transition in spatial rock–paper–scissors game. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 1081-1087.	2.6	8
27	Effect of bypasses on vehicular traffic through a series of signals. Physica A: Statistical Mechanics and Its Applications, 2018, 506, 229-236.	2.6	9
28	Epidemics of random walkers in metapopulation model for complete, cycle, and star graphs. Journal of Theoretical Biology, 2018, 450, 66-75.	1.7	25
29	Cellular automaton for migration in ecosystem: Application of traffic model to a predator–prey system. Physica A: Statistical Mechanics and Its Applications, 2018, 490, 803-807.	2.6	9
30	Dividing traffic cluster into parts by signal control. Physica A: Statistical Mechanics and Its Applications, 2018, 491, 463-470.	2.6	9
31	Metapopulation model of rock-scissors-paper game with subpopulation-specific victory rates stabilized by heterogeneity. Journal of Theoretical Biology, 2018, 458, 103-110.	1.7	4
32	Heterogeneous network promotes species coexistence: metapopulation model for rock-paper-scissors game. Scientific Reports, 2018, 8, 7094.	3.3	30
33	Asymptotic stability of a modified Lotka-Volterra model with small immigrations. Scientific Reports, 2018, 8, 7029.	3.3	35
34	Effect of periodic inflow on speed-controlled shuttle bus. Physica A: Statistical Mechanics and Its Applications, 2017, 469, 224-231.	2.6	6
35	Space promotes the coexistence of species: Effective medium approximation for rock-paper-scissors system. Ecological Modelling, 2017, 359, 240-245.	2.5	8
36	Complex motion of a vehicle through a series of signals controlled by power-law phase. Physica A: Statistical Mechanics and Its Applications, 2017, 478, 1-10.	2.6	11

3

#	Article	IF	CITATIONS
37	Effect of directional migration on Lotka-Volterra system with desert. BioSystems, 2017, 162, 75-80.	2.0	1
38	Effect of stoppage time on motion of a bus through a sequence of signals. Physica A: Statistical Mechanics and Its Applications, 2017, 465, 297-304.	2.6	7
39	Effect of velocity-dependent friction on multiple-vehicle collisions in traffic flow. Physica A: Statistical Mechanics and Its Applications, 2017, 465, 636-643.	2.6	23
40	Epidemic Spreading in Unidirectional Mobile Agents. Journal of the Physical Society of Japan, 2017, 86, 113001.	1.6	10
41	Complex Dynamics of Bus, Tram, and Elevator Delays in Transportation Systems., 2017,, 1-20.		0
42	Effect of speedup delay on shuttle bus schedule. Physica A: Statistical Mechanics and Its Applications, 2016, 460, 121-130.	2.6	7
43	Complex motion of a shuttle bus between two terminals with periodic inflows. Physica A: Statistical Mechanics and Its Applications, 2016, 449, 254-264.	2.6	7
44	Chain-reaction crash on a highway in high visibility. Physica A: Statistical Mechanics and Its Applications, 2016, 450, 466-472.	2.6	11
45	Effect of stopover on motion of two competing elevators in peak traffic. Physica A: Statistical Mechanics and Its Applications, 2016, 444, 613-621.	2.6	12
46	Traffic jam at adjustable tollgates controlled by line length. Physica A: Statistical Mechanics and Its Applications, 2016, 442, 131-136.	2.6	21
47	Traffic dispersion through a series of signals with irregular split. Physica A: Statistical Mechanics and Its Applications, 2016, 442, 122-130.	2.6	12
48	Effect of perception irregularity on chain-reaction crash in low visibility. Physica A: Statistical Mechanics and Its Applications, 2015, 427, 92-99.	2.6	31
49	Complex motion induced by elevator choice in peak traffic. Physica A: Statistical Mechanics and Its Applications, 2015, 436, 159-169.	2.6	13
50	Effect of vehicular size on chain-reaction crash. Physica A: Statistical Mechanics and Its Applications, 2015, 438, 132-139.	2.6	21
51	Asymmetric effect of route-length difference and bottleneck on route choice in two-route traffic system. Physica A: Statistical Mechanics and Its Applications, 2015, 428, 416-425.	2.6	21
52	Chain-reaction crash in traffic flow controlled by taillights. Physica A: Statistical Mechanics and Its Applications, 2015, 419, 1-6.	2.6	51
53	Multiple-vehicle collision induced by lane changing in traffic flow. Physica A: Statistical Mechanics and Its Applications, 2014, 404, 171-179.	2.6	48
54	Effect of bottleneck on route choice in two-route traffic system with real-time information. Physica A: Statistical Mechanics and Its Applications, 2014, 395, 425-433.	2.6	37

#	Article	IF	CITATIONS
55	Driving behavior and control in traffic system with two kinds of signals. Physica A: Statistical Mechanics and Its Applications, 2014, 403, 110-119.	2.6	23
56	Jam formation with line changing at two tollgates on a highway. Physica A: Statistical Mechanics and Its Applications, 2014, 416, 596-603.	2.6	7
57	Dynamic behavior in two-route bus traffic system with real-time information. Physica A: Statistical Mechanics and Its Applications, 2014, 413, 352-360.	2.6	4
58	Effect of restart at signals on traffic flow through a series of signals. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 3223-3230.	2.6	6
59	Dynamics in two-elevator traffic system with real-time information. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 3296-3299.	2.1	6
60	Multiple-vehicle collision in traffic flow by a sudden slowdown. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 1848-1857.	2.6	76
61	Green-wave control of an unbalanced two-route traffic system with signals. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 5422-5430.	2.6	15
62	Complex motion of elevators in piecewise map model combined with circle map. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2047-2051.	2.1	7
63	Modified circle map model for complex motion induced by a change of shuttle buses. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 3392-3401.	2.6	7
64	Nonlinear-map model for bus schedule in capacity-controlled transportation. Applied Mathematical Modelling, 2013, 37, 1823-1835.	4.2	12
65	Vehicular traffic flow through a series of signals with cycle time generated by a logistic map. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 851-856.	2.6	9
66	Nonlinear-map model for the control of an airplane schedule. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 6545-6553.	2.6	5
67	Traffic Behavior in CA Model of Vehicular Traffic through a Series of Signals. Discrete Dynamics in Nature and Society, 2012, 2012, 1-17.	0.9	2
68	Effect of periodic inflow on elevator traffic. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 4397-4405.	2.6	15
69	Vehicular motion in counter traffic flow through a series of signals controlled by a phase shift. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 4976-4985.	2.6	32
70	Effect of signals on two-route traffic system with real-time information. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 6137-6145.	2.6	49
71	Four species CA model for facing pedestrian traffic at rush hour. Applied Mathematical Modelling, 2012, 36, 702-711.	4.2	28
72	Effect of headway and velocity on safety–collision transition induced by lane changing in traffic flow. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 1626-1635.	2.6	74

#	Article	IF	Citations
73	Delay effect on schedule in shuttle bus transportation controlled by capacity. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 3266-3276.	2.6	12
74	Multiple-vehicle collision induced by a sudden stop in traffic flow. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1803-1806.	2.1	20
75	Complex motion of shuttle buses in a transportation system reducing energy consumption. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 4494-4501.	2.6	5
76	Tour time in a two-route traffic system controlled by signals. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 4522-4527.	2.6	23
77	Schedule and complex motion of shuttle bus induced by periodic inflow of passengers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3579-3582.	2.1	6
78	Vehicular motion in 2D city traffic network with signals controlled by phase shift. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 914-928.	2.6	4
79	Regularization and control of irregular vehicular motion through a series of signals at disordered intervals. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 2127-2134.	2.6	0
80	Safety–collision transition induced by lane changing in traffic flow. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1319-1322.	2.1	20
81	Complex motion in nonlinear-map model of elevators in energy-saving traffic. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2047-2050.	2.1	9
82	Freezing transition in a four-directional traffic model for facing and crossing pedestrian flow. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 1729-1738.	2.6	1
83	Traffic flow through multi-lane tollbooths on a toll highway. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 2268-2279.	2.6	30
84	Jamming and freezing transitions in CA model for facing pedestrian traffic with a soft boundary. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 1686-1689.	2.1	19
85	Randomness control of vehicular motion through a sequence of traffic signals at irregular intervals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2823-2826.	2.1	2
86	Effect of speed fluctuations on a green-light path in a 2d traffic network controlled by signals. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 4105-4115.	2.6	11
87	Traffic states induced by slowdown sections on two-lane highway. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 1196-1206.	2.6	11
88	Traffic flow of mobile objects through obstacles: Turning and translational objects. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 157-173.	2.6	20
89	Traffic states and fundamental diagram in cellular automaton model of vehicular traffic controlled by signals. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 1673-1681.	2.6	41
90	Effect of gravitational force upon traffic flow with gradients. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 2880-2894.	2.6	70

#	Article	IF	Citations
91	Hardening by softening in a flow of chainlike self-driven objects. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 3202-3212.	2.6	3
92	Traffic flow on a toll highway with electronic and traditional tollgates. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 4979-4990.	2.6	26
93	Vehicular motion on a selected path in a 2d traffic network controlled by signals. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 2911-2921.	2.6	1
94	Freezing transition in the mean-field approximation model of pedestrian counter flow. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 4973-4978.	2.6	14
95	Green-light paths in city traffic controlled by signals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 536-539.	2.1	5
96	Freezing transition in bi-directional CA model for facing pedestrian traffic. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2917-2921.	2.1	33
97	Modeling and simulation for vehicular traffic in city network controlled by signals. , 2009, , .		2
98	Jamming transitions induced by a slow vehicle in traffic flow on a multi-lane highway. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P04002.	2.3	5
99	Transition from homogeneous to inhomogeneous flows in a lattice-gas binary mixture of slender particles. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 2337-2352.	2.6	5
100	Fundamental diagram in traffic flow of mixed vehicles on multi-lane highway. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 5583-5596.	2.6	13
101	Vehicular motion through a sequence of traffic lights controlled by logistic map. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5887-5890.	2.1	11
102	Flow overshooting in crossing flow of lattice gas. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 4119-4132.	2.6	16
103	Dynamics and schedule of shuttle bus controlled by traffic signal. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 5892-5900.	2.6	9
104	Effect of irregularity on vehicular traffic through a sequence of traffic lights. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 1637-1647.	2.6	30
105	Volatile jam and flow fluctuation in counter flow of slender particles. Physica A: Statistical Mechanics and Its Applications, 2007, 373, 672-682.	2.6	15
106	Nonlinear-map model for split effect on vehicular traffic through periodic signals. Physica A: Statistical Mechanics and Its Applications, 2007, 374, 431-440.	2.6	10
107	Jam formation in traffic flow on a highway with some slowdown sections. Physica A: Statistical Mechanics and Its Applications, 2007, 374, 419-430.	2.6	19
108	Traffic dispersion and its mapping to one-sided ballistic deposition. Physica A: Statistical Mechanics and Its Applications, 2007, 376, 641-648.	2.6	1

#	Article	IF	Citations
109	Dynamical model for retrieval of tram schedule. Physica A: Statistical Mechanics and Its Applications, 2007, 377, 661-671.	2.6	4
110	Sidle effect on pedestrian counter flow. Physica A: Statistical Mechanics and Its Applications, 2007, 377, 269-278.	2.6	91
111	Traffic mixing in deterministic two-lane model of Hurricane evacuation. Physica A: Statistical Mechanics and Its Applications, 2007, 380, 490-502.	2.6	14
112	Vehicular traffic through a sequence of green-wave lights. Physica A: Statistical Mechanics and Its Applications, 2007, 380, 503-511.	2.6	24
113	Velocity enhancement of slow particles in lattice–gas binary mixture. Physica A: Statistical Mechanics and Its Applications, 2007, 383, 425-434.	2.6	5
114	Vehicular traffic through a self-similar sequence of traffic lights. Physica A: Statistical Mechanics and Its Applications, 2007, 386, 381-387.	2.6	11
115	Expansion, compression and triangular shockwaves in traffic flow above critical point. Physica A: Statistical Mechanics and Its Applications, 2007, 373, 713-720.	2.6	2
116	Traffic dispersion induced by noise in off-lattice model. Physica A: Statistical Mechanics and Its Applications, 2007, 374, 409-418.	2.6	2
117	Traffic congestion and dispersion in Hurricane evacuation. Physica A: Statistical Mechanics and Its Applications, 2007, 376, 617-627.	2.6	14
118	Clustering and maximal flow in vehicular traffic through a sequence of traffic lights. Physica A: Statistical Mechanics and Its Applications, 2007, 377, 651-660.	2.6	79
119	Theory and simulation for jamming transitions induced by a slow vehicle in traffic flow. Physica A: Statistical Mechanics and Its Applications, 2007, 379, 263-273.	2.6	8
120	Passenger's fluctuation and chaos on ferryboats. Physica A: Statistical Mechanics and Its Applications, 2007, 383, 613-623.	2.6	4
121	Discontinuity at edge of traffic jam induced by slowdown. Physica A: Statistical Mechanics and Its Applications, 2006, 364, 464-472.	2.6	26
122	Jamming transition in counter flow of slender particles on square lattice. Physica A: Statistical Mechanics and Its Applications, 2006, 366, 503-512.	2.6	46
123	Control of vehicular traffic through a sequence of traffic lights positioned with disordered interval. Physica A: Statistical Mechanics and Its Applications, 2006, 368, 560-566.	2.6	63
124	Traffic jam and discontinuity induced by slowdown in two-stage optimal-velocity model. Physica A: Statistical Mechanics and Its Applications, 2006, 370, 756-768.	2.6	10
125	Dispersion and scaling of fluctuating vehicles through a sequence of traffic lights. Physica A: Statistical Mechanics and Its Applications, 2006, 361, 619-629.	2.6	8
126	Evacuation of crawlers and walkers from corridor through an exit. Physica A: Statistical Mechanics and Its Applications, 2006, 367, 449-460.	2.6	173

#	Article	IF	Citations
127	Chaos control and schedule of shuttle buses. Physica A: Statistical Mechanics and Its Applications, 2006, 371, 683-691.	2.6	17
128	Self-similar behavior of a single vehicle through periodic traffic lights. Physica A: Statistical Mechanics and Its Applications, 2005, 347, 673-682.	2.6	63
129	Fluctuation and transition of vehicular traffic through a sequence of traffic lights. Physica A: Statistical Mechanics and Its Applications, 2005, 350, 577-587.	2.6	10
130	Bunching and transition of vehicles controlled by a sequence of traffic lights. Physica A: Statistical Mechanics and Its Applications, 2005, 350, 563-576.	2.6	16
131	Chaos and dynamical transition of a single vehicle induced by traffic light and speedup. Physica A: Statistical Mechanics and Its Applications, 2005, 348, 561-571.	2.6	29
132	Traffic states and jamming transitions induced by a bus in two-lane traffic flow. Physica A: Statistical Mechanics and Its Applications, 2005, 350, 548-562.	2.6	39
133	Phase separation and evolution of one pulse jam in traffic flow. Physica A: Statistical Mechanics and Its Applications, 2005, 354, 571-581.	2.6	2
134	Phase diagram in multi-phase traffic model. Physica A: Statistical Mechanics and Its Applications, 2005, 355, 530-550.	2.6	40
135	Experiment and simulation for counterflow of people going on all fours. Physica A: Statistical Mechanics and Its Applications, 2005, 358, 516-528.	2.6	80
136	Chaotic and periodic motions of two competing vehicles controlled by traffic lights. Chaos, Solitons and Fractals, 2005, 25, 245-253.	5.1	3
137	CHAOS AND DYNAMICS OF CYCLIC TRUCKING OF SIZE TWO. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 4065-4073.	1.7	3
138	Experiment, theory, and simulation of the evacuation of a room without visibility. Physical Review E, 2004, 69, 066132.	2.1	210
139	Stability and transition in multiple production lines. Physica A: Statistical Mechanics and Its Applications, 2004, 334, 243-254.	2.6	3
140	Dynamical transition in random supply chain. Physica A: Statistical Mechanics and Its Applications, 2004, 335, 661-670.	2.6	8
141	Statistical characteristics of evacuation without visibility in random walk model. Physica A: Statistical Mechanics and Its Applications, 2004, 341, 638-648.	2.6	47
142	Effect of exit configuration on evacuation of a room without visibility. Physica A: Statistical Mechanics and Its Applications, 2004, 343, 712-724.	2.6	79
143	Fluctuation of tour time induced by interactions between cyclic trams. Physica A: Statistical Mechanics and Its Applications, 2004, 331, 279-290.	2.6	6
144	Dynamical transitions in peak elevator traffic. Physica A: Statistical Mechanics and Its Applications, 2004, 333, 441-452.	2.6	17

#	Article	IF	Citations
145	Stability analysis and stabilization strategies for linear supply chains. Physica A: Statistical Mechanics and Its Applications, 2004, 335, 644-660.	2.6	71
146	Experiment and simulation of pedestrian counter flow. Physica A: Statistical Mechanics and Its Applications, 2004, 336, 638-650.	2.6	166
147	Spatio-temporal dynamics of jams in two-lane traffic flow with a blockage. Physica A: Statistical Mechanics and Its Applications, 2003, 318, 537-550.	2.6	98
148	Spatio-temporal distribution of escape time in evacuation process. Physica A: Statistical Mechanics and Its Applications, 2003, 320, 611-621.	2.6	56
149	Transitions to chaos of a shuttle bus induced by continuous speedup. Physica A: Statistical Mechanics and Its Applications, 2003, 321, 641-652.	2.6	4
150	Complex motions of shuttle buses by speed control. Physica A: Statistical Mechanics and Its Applications, 2003, 322, 685-697.	2.6	8
151	Chaos and headway distribution of shuttle buses that pass each other freely. Physica A: Statistical Mechanics and Its Applications, 2003, 323, 686-694.	2.6	17
152	Chemical-reaction model for Mexican wave. Physica A: Statistical Mechanics and Its Applications, 2003, 323, 677-685.	2.6	1
153	Transition and saturation of traffic flow controlled by traffic lights. Physica A: Statistical Mechanics and Its Applications, 2003, 325, 531-546.	2.6	135
154	Complex behavior of elevators in peak traffic. Physica A: Statistical Mechanics and Its Applications, 2003, 326, 556-566.	2.6	27
155	Chaotic motion of shuttle buses in two-dimensional-map model. Chaos, Solitons and Fractals, 2003, 18, 731-738.	5.1	5
156	Dynamical transitions to chaotic and periodic motions of two shuttle buses. Physica A: Statistical Mechanics and Its Applications, 2003, 319, 568-578.	2.6	22
157	Dynamical behavior of N shuttle buses not passing each other: chaotic and periodic motions. Physica A: Statistical Mechanics and Its Applications, 2003, 327, 570-582.	2.6	3
158	Lattice gas simulation of experimentally studied evacuation dynamics. Physical Review E, 2003, 67, 067101.	2.1	280
159	Fluctuation of riding passengers induced by chaotic motions of shuttle buses. Physical Review E, 2003, 68, 036107.	2.1	18
160	Chaotic and periodic motions of a cyclic bus induced by speedup. Physical Review E, 2002, 66, 046103.	2.1	74
161	The physics of traffic jams. Reports on Progress in Physics, 2002, 65, 1331-1386.	20.1	872
162	Clogging transition of pedestrian flow in T-shaped channel. Physica A: Statistical Mechanics and Its Applications, 2002, 303, 239-250.	2.6	145

#	Article	IF	Citations
163	Dynamical transition in merging pedestrian flow without bottleneck. Physica A: Statistical Mechanics and Its Applications, 2002, 307, 505-515.	2.6	20
164	Effect of partition line on jamming transition in pedestrian counter flow. Physica A: Statistical Mechanics and Its Applications, 2002, 308, 460-470.	2.6	65
165	Dynamical transition to periodic motions of a recurrent bus induced by nonstops. Physica A: Statistical Mechanics and Its Applications, 2002, 312, 251-259.	2.6	9
166	Pattern formation and jamming transition in pedestrian counter flow. Physica A: Statistical Mechanics and Its Applications, 2002, 313, 709-723.	2.6	114
167	Optimal admission time for shifting the audience. Physica A: Statistical Mechanics and Its Applications, 2002, 313, 695-708.	2.6	40
168	Dynamical transition in a coupled-map lattice model of a recurrent bus. Physica A: Statistical Mechanics and Its Applications, 2002, 316, 625-636.	2.6	7
169	Transition to chaotic motion of a cyclic bus induced by nonstops. Physica A: Statistical Mechanics and Its Applications, 2002, 316, 637-648.	2.6	5
170	Bunching and delay in bus-route system with a couple of recurrent buses. Physica A: Statistical Mechanics and Its Applications, 2002, 305, 629-639.	2.6	15
171	Dynamical behavior in the nonlinear-map model of an elevator. Physica A: Statistical Mechanics and Its Applications, 2002, 310, 67-77.	2.6	19
172	Phase diagrams in unidirectionally coupled map lattice for open traffic flow. Physica A: Statistical Mechanics and Its Applications, 2001, 289, 267-277.	2.6	11
173	Multiple jamming transitions in traffic flow. Physica A: Statistical Mechanics and Its Applications, 2001, 290, 501-511.	2.6	22
174	Scaling behavior of crowd flow outside a hall. Physica A: Statistical Mechanics and Its Applications, 2001, 292, 545-554.	2.6	202
175	Scaling of pedestrian channel flow with a bottleneck. Physica A: Statistical Mechanics and Its Applications, 2001, 294, 257-268.	2.6	164
176	Interaction between buses and passengers on a bus route. Physica A: Statistical Mechanics and Its Applications, 2001, 296, 320-330.	2.6	42
177	Delay transition of a recurrent bus on a circular route. Physica A: Statistical Mechanics and Its Applications, 2001, 297, 260-268.	2.6	57
178	Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck. Physica A: Statistical Mechanics and Its Applications, 2001, 300, 558-566.	2.6	64
179	Enhancement and stabilization of traffic flow by moving in groups. Physical Review E, 2001, 64, 016106.	2.1	8
180	Bunching transition in a time-headway model of a bus route. Physical Review E, 2001, 63, 036115.	2.1	114

#	Article	IF	CITATIONS
181	K-1801 CA Simulation of Mass Transfer in Stirred Tank with Absorbent Particles. The Proceedings of the JSME Annual Meeting, 2001, II.01.1, 369-370.	0.0	О
182	K-1802 CA Simulation of Solidification process in a Stirred Tank. The Proceedings of the JSME Annual Meeting, 2001, II.01.1, 371-372.	0.0	0
183	Nonlinear Wave and Stabilization of Traffic Flow 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2000, 66, 2884-2890.	0.2	1
184	Phase diagrams of noisy traffic states in the presence of a bottleneck. Physica A: Statistical Mechanics and Its Applications, 2000, 280, 602-613.	2.6	27
185	Traffic behavior in a mixture of different vehicles. Physica A: Statistical Mechanics and Its Applications, 2000, 284, 405-420.	2.6	23
186	Jamming transition of pedestrian traffic at a crossing with open boundaries. Physica A: Statistical Mechanics and Its Applications, 2000, 286, 377-390.	2.6	141
187	Kinetic clustering and jamming transitions in a car-following model for bus route. Physica A: Statistical Mechanics and Its Applications, 2000, 287, 302-312.	2.6	61
188	Jamming transition in two-dimensional pedestrian traffic. Physica A: Statistical Mechanics and Its Applications, 2000, 275, 281-291.	2.6	201
189	Traffic jams induced by fluctuation of a leading car. Physical Review E, 2000, 61, 3534-3540.	2.1	78
190	Density waves in traffic flow. Physical Review E, 2000, 61, 3564-3570.	2.1	97
191	Jamming transition in a two-dimensional traffic flow model. Physical Review E, 1999, 59, 4857-4864.	2.1	221
192	Soliton and kink jams in traffic flow with open boundaries. Physical Review E, 1999, 60, 180-187.	2.1	102
193	TDGL and MKdV equations for jamming transition in the lattice models of traffic. Physica A: Statistical Mechanics and Its Applications, 1999, 264, 581-592.	2.6	240
194	Jamming transitions and the modified Korteweg–de Vries equation in a two-lane traffic flow. Physica A: Statistical Mechanics and Its Applications, 1999, 265, 297-310.	2.6	188
195	Jamming transition in pedestrian counter flow. Physica A: Statistical Mechanics and Its Applications, 1999, 267, 487-498.	2.6	479
196	Jamming transition in traffic flow on triangular lattice. Physica A: Statistical Mechanics and Its Applications, 1999, 271, 200-221.	2.6	74
197	Jamming transition of high-dimensional traffic dynamics. Physica A: Statistical Mechanics and Its Applications, 1999, 272, 592-611.	2.6	75
198	Chaotic jam and phase transition in traffic flow with passing. Physical Review E, 1999, 60, 1535-1541.	2.1	83

#	Article	IF	CITATIONS
199	Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction. Physical Review E, 1999, 60, 6395-6401.	2.1	297
200	Phase transition and critical phenomenon in traffic flow model with velocity-dependent sensitivity. Physica A: Statistical Mechanics and Its Applications, 1998, 253, 353-365.	2.6	5
201	Monte Carlo simulation of coverage in two-dimensional thin-layer electrodeposition. Heat Transfer - Japanese Research, 1998, 27, 365-375.	0.1	1
202	Burgers equation for kinetic clustering in traffic flow. Physica A: Statistical Mechanics and Its Applications, 1998, 255, 158-162.	2.6	22
203	Time-dependent Ginzburg–Landau equation for the jamming transition in traffic flow. Physica A: Statistical Mechanics and Its Applications, 1998, 258, 237-242.	2.6	11
204	Modified KdV equation for jamming transition in the continuum models of traffic. Physica A: Statistical Mechanics and Its Applications, 1998, 261, 599-607.	2.6	398
205	Phase transition and critical phenomenon in the power-law model of traffic. Physica A: Statistical Mechanics and Its Applications, 1998, 248, 353-364.	2.6	11
206	Delay effect on phase transitions in traffic dynamics. Physical Review E, 1998, 57, 6415-6421.	2.1	106
207	From ballistic deposition to the Kardar-Parisi-Zhang equation through a limiting procedure. Physical Review E, 1998, 58, 700-703.	2.1	18
208	Thermodynamic theory for the jamming transition in traffic flow. Physical Review E, 1998, 58, 4271-4276.	2.1	161
209	Phase transition in a difference equation model of traffic flow. Journal of Physics A, 1998, 31, 5431-5438.	1.6	67
210	Instability of a Traffic Jam Induced by Slowing Down. Journal of the Physical Society of Japan, 1997, 66, 1928-1931.	1.6	30
211	Monte Carlo Simulation of Coverage in Two-Dimensional Thin-Layer Electrodeposition. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1997, 63, 267-272.	0.2	0
212	Gas Kinetics of Traffic Jam. Journal of the Physical Society of Japan, 1997, 66, 1219-1224.	1.6	20
213	Kinetic segregation in a multilane highway traffic flow. Physica A: Statistical Mechanics and Its Applications, 1997, 237, 67-74.	2.6	51
214	Phase transition and scaling in the generalized traffic flow model. Physica A: Statistical Mechanics and Its Applications, 1997, 246, 460-470.	2.6	13
215	Propagation of Jams in Congested Traffic Flow. Journal of the Physical Society of Japan, 1996, 65, 2333-2336.	1.6	12
216	Gas Kinetic Approach to Two-Dimensional Traffic Flow. Journal of the Physical Society of Japan, 1996, 65, 3150-3152.	1.6	32

#	Article	IF	Citations
217	Effect of car acceleration on traffic flow in 1D stochastic CA model. Physica A: Statistical Mechanics and Its Applications, 1996, 223, 137-148.	2.6	25
218	SELF-ORGANIZED CRITICALITY IN 1D TRAFFIC FLOW. Fractals, 1996, 04, 279-283.	3.7	6
219	Kinetics of Clustering and Acceleration in 1D Traffic Flow. Journal of the Physical Society of Japan, 1996, 65, 3386-3389.	1.6	21
220	Kinetics of segregation in a two-lane highway traffic flow. Journal of Physics A, 1996, 29, 6531-6542.	1.6	23
221	Self-Organized Criticality and Scaling in Lifetime of Traffic Jams. Journal of the Physical Society of Japan, 1995, 64, 31-34.	1.6	10
222	Self-organized criticality in asymmetric exclusion model with noise for freeway traffic. Physica A: Statistical Mechanics and Its Applications, 1995, 218, 145-154.	2.6	15
223	Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive. Journal of the Physical Society of Japan, 1995, 64, 1421-1430.	1.6	44
224	Bunching of cars in asymmetric exclusion models for freeway traffic. Physical Review E, 1995, 51, 922-928.	2.1	78
225	Drift-Induced Transition and Growth-Rate Distribution in Diffusion-Limited Aggregation. Journal of the Physical Society of Japan, 1995, 64, 352-355.	1.6	1
226	Effect of Jam-Avoiding Turn on Jamming Transition in Two-Dimensional Traffic Flow Model. Journal of the Physical Society of Japan, 1994, 63, 1228-1231.	1.6	41
227	Traffic Jam and Shock Formation in Stochastic Traffic-Flow Model of a Two-Lane Roadway. Journal of the Physical Society of Japan, 1994, 63, 52-58.	1.6	39
228	Traffic jam induced by a crosscut road in a traffic-flow model. Physica A: Statistical Mechanics and Its Applications, 1994, 207, 574-583.	2.6	34
229	Dynamical jamming transition induced by a car accident in traffic-flow model of a two-lane roadway. Physica A: Statistical Mechanics and Its Applications, 1994, 202, 449-458.	2.6	40
230	Scaling of Aggregation with Creation. Journal of the Physical Society of Japan, 1994, 63, 830-833.	1.6	0
231	Scaling of Coalescing Random Walkers with Injection Obeying Nonlinear Conservation Law. Journal of the Physical Society of Japan, 1994, 63, 3629-3633.	1.6	0
232	Jamming transition induced by a stagnant street in a traffic-flow model. Physica A: Statistical Mechanics and Its Applications, 1993, 198, 108-116.	2.6	32
233	Jamming transition in the traffic-flow model with two-level crossings. Physical Review E, 1993, 48, 3290-3294.	2.1	200
234	Spreading of Traffic Jam in a Traffic Flow Model. Journal of the Physical Society of Japan, 1993, 62, 1085-1088.	1.6	31

#	Article	IF	Citations
235	DYNAMIC SCALING OF RIVER-SIZE DISTRIBUTION IN THE EXTENDED SCHEIDEGGER'S RIVER NETWORK MODEL. Fractals, 1993, 01, 247-252.	3.7	4
236	Aggregation at Early Stage of Growth in Thin Films. Journal of the Physical Society of Japan, 1993, 62, 981-989.	1.6	8
237	Clustering of Cars in Cellular Automaton Model of Freeway Traffic. Journal of the Physical Society of Japan, 1993, 62, 3837-3840.	1.6	28
238	Anisotropic Effect on Jamming Transition in Traffic-Flow Model. Journal of the Physical Society of Japan, 1993, 62, 2656-2662.	1.6	66
239	Power-Law Distribution and 1/fNoise of Waiting Time near Traffic-Jam Threshold. Journal of the Physical Society of Japan, 1993, 62, 2533-2536.	1.6	29
240	RENORMALIZATION GROUP FOR FRACTAL GROWTH PHENOMENA. , 1993, , 73-124.		0
241	Unsteady Diffusion-Limited Aggregation. Journal of the Physical Society of Japan, 1992, 61, 1437-1440.	1.6	2
242	Multifractality of growth probability distribution in diffusion-limited-corrosion pit. Physical Review A, 1992, 45, R6985-R6988.	2.5	8
243	Crossover effects in chemical-dissolution phenomena: A renormalization-group study. Physical Review A, 1992, 45, 2471-2479.	2.5	3
244	Structural transition in pitting corrosion of binary alloys. Physical Review A, 1992, 45, 2480-2484.	2.5	9
245	Effect of drift on segregation in two-component diffusion-limited aggregation. Physical Review A, 1992, 45, 3896-3902.	2.5	5
246	Multiparticle simulation for morphological transitions in diffusion-limited aggregation. Physical Review A, 1992, 46, 2022-2028.	2.5	6
247	Fractal Structure and Pattern in Two-Species Growth Model: A Generalized Directed Percolation. Journal of the Physical Society of Japan, 1992, 61, 3196-3202.	1.6	2
248	Fractal and Multifractal Properties of Poissonian Growth. Journal of the Physical Society of Japan, 1992, 61, 1457-1460.	1.6	1
249	Scaling Structure of Pit Profile in Pitting Corrosion. Journal of the Physical Society of Japan, 1991, 60, 3997-4000.	1.6	2
250	Morphology and segregation in two-component diffusion-limited aggregation. Physical Review A, 1991, 44, 8303-8312.	2.5	5
251	Renormalization group for viscous fingering with chemical dissolution. Physical Review Letters, 1991, 66, 616-619.	7.8	9
252	Morphological changes in convection-diffusion-limited deposition. Physical Review A, 1991, 43, 2970-2976.	2.5	23

#	Article	IF	Citations
253	Viscous fingering near the percolation threshold: Double-crossover phenomena. Physical Review A, 1991, 43, 2963-2969.	2.5	4
254	Phase transition in diffusion-limited aggregation with two immiscible components. Physical Review A, 1991, 44, 6723-6729.	2.5	6
255	Morphological Evolution in DLA under Thermal Convection. Journal of the Physical Society of Japan, 1991, 60, 1181-1184.	1.6	3
256	Diffusion-Limited Aggregation on Percolating Cluster: Crossover and Multifractal Structure. Journal of the Physical Society of Japan, 1991, 60, 1217-1225.	1.6	0
257	Modified Laplacian Growth under Shear Flow. Journal of the Physical Society of Japan, 1991, 60, 2700-2705.	1.6	2
258	Deterministic Avalanches on a Branching Koch Curve. Journal of the Physical Society of Japan, 1991, 60, 2571-2575.	1.6	1
259	Double-crossover phenomena in Laplacian growth: Effects of sticking probability and finite viscosity ratio. Physical Review A, 1990, 41, 3263-3269.	2.5	15
260	Crossover and thermodynamic representation in the extended η model for fractal growth. Physical Review A, 1990, 42, 4838-4844.	2.5	4
261	Crossover phenomena in viscous fingering with nonviscous-flow threshold. Physical Review A, 1990, 41, 5758-5760.	2.5	0
262	Diffusion-limited aggregation on hierarchical lattice with multifractal heterogeneity. Physical Review A, 1990, 41, 999-1005.	2.5	1
263	Fractal nature of non-Newtonian viscous fingering. Physical Review A, 1990, 41, 994-998.	2.5	7
264	Crossover phenomena in non-Newtonian viscous fingers at a finite viscosity ratio. Physical Review A, 1990, 41, 4433-4438.	2.5	1
265	Phase transition and crossover in diffusion-limited aggregation with reaction times. Physical Review A, 1990, 42, 3512-3517.	2.5	3
266	Morphological Evolution in DLA under Rotating Flow. Journal of the Physical Society of Japan, 1990, 59, 3447-3450.	1.6	21
267	Diffusion-Limited Aggregation in Coupled Diffusion Fields. Journal of the Physical Society of Japan, 1990, 59, 474-481.	1.6	10
268	Laplacian Growth at Reaction Surface. Journal of the Physical Society of Japan, 1990, 59, 3868-3875.	1.6	1
269	Growth model with phase transition: Drift-diffusion-limited aggregation. Physical Review A, 1989, 39, 438-441.	2.5	36
270	Pattern formation in nonlinear diffusion-limited aggregation. Physical Review A, 1989, 39, 2169-2174.	2.5	5

#	Article	IF	Citations
271	Hydrodynamic instability and the structural phase transition in diffusion-limited aggregation with drift. Physical Review A, 1989, 40, 5351-5355.	2.5	7
272	Stabilization of long-wavelength modes on the interface in electrodeposition. Physical Review A, 1989, 40, 2154-2158.	2.5	0
273	Laplacian growth phenomena with the third boundary condition: Crossover from dense structure to diffusion-limited aggregation fractal. Physical Review A, 1989, 40, 7286-7291.	2.5	27
274	Fractal structure of drift-diffusion-limited aggregation: Renormalization-group approach. Physical Review A, 1988, 37, 3514-3519.	2.5	14
275	Multifractal structures of mass and growth probability distributions in diffusion-limited aggregation on hierarchical lattices. Physical Review A, 1988, 38, 2632-2640.	2.5	25
276	Effect of growing interface on the diffusion-limited aggregation: Crossover from the diffusion-limited-aggregation fractal. Physical Review A, 1988, 38, 6396-6401.	2.5	1
277	Convection effect on the diffusion-limited-aggregation fractal: Renormalization-group approach. Physical Review A, 1988, 37, 4461-4468.	2.5	6
278	Renormalization-group approach to multifractal structure of growth probability distribution in diffusion-limited aggregation. Physical Review A, 1987, 36, 5812-5819.	2.5	64
279	Resistor-network approach to growth probability for dielectric-breakdown models at a surface. Physical Review A, 1987, 35, 2765-2767.	2.5	4
280	Band structures in one-dimensional binary alloys with self-similar atomic configurations. Physical Review B, 1985, 32, 2049-2057.	3.2	8
281	Electronic states in one-dimensional self-similar alloy with (31,32,…,3N) periods. Physical Review B, 1984, 30, 6241-6244.	3.2	6
282	Disorderedâ€resistor network approach to the effective conductivity in inhomogeneous continua with substitutional disorder. Journal of Applied Physics, 1983, 54, 5132-5138.	2.5	2
283	Effective permittivity in random anisotropic media. Journal of Applied Physics, 1980, 51, 4944-4949.	2.5	11
284	Statistical Theory of Effective Viscosity in a Random Suspension. Journal of the Physical Society of Japan, 1979, 47, 320-326.	1.6	14
285	Effect of dissolved gas on bubble nucleation. International Journal of Heat and Mass Transfer, 1976, 19, 1153-1159.	4.8	55
286	Fundamental Study of the Disappearance of a Bubble Nucleus in a Liquid Medium. Transactions of the Japan Society of Mechanical Engineers, 1975, 41, 1530-1538.	0.0	2
287	Thermodynamic Study of the Stability of a Gas Bubble in a Liquid Drop. Transactions of the Japan Society of Mechanical Engineers, 1975, 41, 909-918.	0.0	1