
Jingyi Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12080495/publications.pdf Version: 2024-02-01

Писхі Ми

#	Article	IF	CITATIONS
1	Ultrathin, Flexible Polymer Electrolyte for Costâ€Effective Fabrication of Allâ€Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902767.	19.5	239
2	Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy and Environmental Science, 2021, 14, 12-36.	30.8	236
3	Ultralight Layerâ€by‣ayer Selfâ€Assembled MoS ₂ â€Polymer Modified Separator for Simultaneously Trapping Polysulfides and Suppressing Lithium Dendrites. Advanced Energy Materials, 2018, 8, 1802430.	19.5	170
4	Polycationic Polymer Layer for Air‣table and Dendriteâ€Free Li Metal Anodes in Carbonate Electrolytes. Advanced Materials, 2021, 33, e2007428.	21.0	94
5	Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS ₂ nanosheet@N-doped carbon interlayer for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 7897-7906.	10.3	93
6	From Fundamental Understanding to Engineering Design of Highâ€Performance Thick Electrodes for Scalable Energy‣torage Systems. Advanced Materials, 2021, 33, e2101275.	21.0	89
7	Electrochemical (bio) sensors go green. Biosensors and Bioelectronics, 2020, 163, 112270.	10.1	85
8	Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes. Nano Letters, 2021, 21, 5896-5904.	9.1	66
9	Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy, 2020, 72, 104725.	16.0	63
10	SiO ₂ @MoS ₂ core–shell nanocomposite layers with high lithium ion diffusion as a triple polysulfide shield for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 7644-7653.	10.3	60
11	Gradient Design for Highâ€Energy and Highâ€Power Batteries. Advanced Materials, 2022, 34, .	21.0	53
12	Low-Tortuosity Thick Electrodes with Active Materials Gradient Design for Enhanced Energy Storage. ACS Nano, 2022, 16, 4805-4812.	14.6	52
13	Ultrahigh-Capacity and Scalable Architected Battery Electrodes <i>via</i> Tortuosity Modulation. ACS Nano, 2021, 15, 19109-19118.	14.6	48
14	Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. EnergyChem, 2021, 3, 100058.	19.1	47
15	Improving Na/Na ₃ Zr ₂ Si ₂ PO ₁₂ Interface via SnO <i>_x</i> /Sn Film for Highâ€Performance Solidâ€5tate Sodium Metal Batteries. Small Methods, 2021, 5, e2100339.	8.6	38
16	Air-stable means more: designing air-defendable lithium metals for safe and stable batteries. Materials Horizons, 2020, 7, 2619-2634.	12.2	37
17	Gradient Architecture Design in Scalable Porous Battery Electrodes. Nano Letters, 2022, 22, 2521-2528.	9.1	37
18	Highly thermally conductive yet mechanically robust composites with nacre-mimetic structure prepared by evaporation-induced self-assembly approach. Chemical Engineering Journal, 2021, 405, 126865.	12.7	34

Jingyi Wu

#	Article	IF	CITATIONS
19	Scalable Approach to Construct Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management. ACS Applied Materials & Interfaces, 2018, 10, 41690-41698.	8.0	32
20	Safety-reinforced plastic crystal composite polymer electrolyte by 3D MoS2-based nano-hybrid for Li-metal batteries. Journal of Power Sources, 2018, 405, 7-17.	7.8	32
21	Composite Lithium Metal Anodes with Lithiophilic and Lowâ€Tortuosity Scaffold Enabling Ultrahigh Currents and Capacities in Carbonate Electrolytes. Advanced Functional Materials, 2021, 31, 2009961.	14.9	32
22	Building Efficient Ion Pathway in Highly Densified Thick Electrodes with High Gravimetric and Volumetric Energy Densities. Nano Letters, 2021, 21, 9339-9346.	9.1	31
23	UV-curable boron nitride nanosheet/ionic liquid-based crosslinked composite polymer electrolyte in lithium metal batteries. Journal of Power Sources, 2019, 414, 283-292.	7.8	30
24	Vertically aligned two-dimensional materials-based thick electrodes for scalable energy storage systems. Nano Research, 2021, 14, 3562-3575.	10.4	30
25	Dual-Functional Interlayer Based on Radially Oriented Ultrathin MoS ₂ Nanosheets for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2019, 2, 1702-1711.	5.1	29
26	A Prelithiation Separator for Compensating the Initial Capacity Loss of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38194-38201.	8.0	21
27	In situ protection of a sulfur cathode and a lithium anode via adopting a fluorinated electrolyte for stable lithium-sulfur batteries. Science China Materials, 2021, 64, 2127-2138.	6.3	12
28	A Multifunctional Inorganic Composite Separator for Stable High-Safety Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 10139-10146.	5.1	10
29	Lithiumâ€Metal Batteries: Polycationic Polymer Layer for Airâ€Stable and Dendriteâ€Free Li Metal Anodes in Carbonate Electrolytes (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170087	21.0	2