José Pinela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1208018/publications.pdf

Version: 2024-02-01

92 papers 2,468 citations

249298 26 h-index 263392 45 g-index

95 all docs 95 docs citations 95 times ranked 2983 citing authors

#	Article	IF	CITATIONS
1	Chemical composition and biological activity of cardoon (Cynara cardunculus L. var. altilis) seeds harvested at different maturity stages. Food Chemistry, 2022, 369, 130875.	4.2	23
2	Betalains. , 2022, , 461-507.		0
3	Red pitaya (Hylocereus costaricensis) peel as a source of valuable molecules: Extraction optimization to recover natural colouring agents. Food Chemistry, 2022, 372, 131344.	4.2	18
4	Applications of bioactive compounds extracted from olive industry wastes: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 453-476.	5.9	17
5	Chemical composition and biological activities of whole and dehulled hemp (Cannabis sativa L.) seeds. Food Chemistry, 2022, 374, 131754.	4.2	36
6	Bioactive profile of edible nasturtium and rose flowers during simulated gastrointestinal digestion. Food Chemistry, 2022, 381, 132267.	4.2	16
7	Optimized ultrasound-assisted extraction of phenolic compounds from Thymus comosus Heuff. ex Griseb. et Schenk (wild thyme) and their bioactive potential. Ultrasonics Sonochemistry, 2022, 84, 105954.	3.8	27
8	Nutritional and bioactive oils from salmon (Salmo salar) side streams obtained by Soxhlet and optimized microwave-assisted extraction. Food Chemistry, 2022, 386, 132778.	4.2	20
9	The powerful Solanaceae: Food and nutraceutical applications in a sustainable world. Advances in Food and Nutrition Research, 2022, , 131-172.	1.5	8
10	Phenolic Composition and Antioxidant, Anti-Inflammatory, Cytotoxic, and Antimicrobial Activities of Cardoon Blades at Different Growth Stages. Biology, 2022, 11, 699.	1.3	5
11	Sonoextraction of phenolic compounds and saponins from Aesculus hippocastanum seed kernels: Modeling and optimization. Industrial Crops and Products, 2022, 185, 115142.	2.5	3
12	Bioaccessibility of Macrominerals and Trace Elements from Tomato (Solanum lycopersicum L.) Farmers' Varieties. Foods, 2022, 11, 1968.	1.9	7
13	The Bioactivities and Chemical Profile of Turnip-Rooted Parsley Germplasm. Horticulturae, 2022, 8, 639.	1.2	3
14	Recovery of Citric Acid from Citrus Peels: Ultrasound-Assisted Extraction Optimized by Response Surface Methodology. Chemosensors, 2022, 10, 257.	1.8	8
15	Seasonal variation in bioactive properties and phenolic composition of cardoon (Cynara cardunculus) Tj ETQq $1\ 1$	0.784314	FrgBT/Overla
16	Nutritional and phytochemical profiles and biological activities of Moringa oleifera Lam. edible parts from Guinea-Bissau (West Africa). Food Chemistry, 2021, 341, 128229.	4.2	26
17	Valorisation of black mulberry and grape seeds: Chemical characterization and bioactive potential. Food Chemistry, 2021, 337, 127998.	4.2	41
18	Phytochemical Characterization and Evaluation of Bioactive Properties of Tisanes Prepared from Promising Medicinal and Aromatic Plants. Foods, 2021, 10, 475.	1.9	4

#	Article	IF	CITATIONS
19	Promising Preserving Agents from Sage and Basil: A Case Study with Yogurts. Foods, 2021, 10, 676.	1.9	10
20	Chemical and Bioactive Features of Amaranthus caudatus L. Flowers and Optimized Ultrasound-Assisted Extraction of Betalains. Foods, 2021, 10, 779.	1.9	18
21	Antioxidant and Antimicrobial Influence on Oyster Mushrooms (Pleurotus ostreatus) from Substrate Supplementation of Calcium Silicate. Sustainability, 2021, 13, 5019.	1.6	5
22	Valorization of Cereal By-Products from the Milling Industry as a Source of Nutrients and Bioactive Compounds to Boost Resource-Use Efficiency. Agronomy, 2021, 11, 972.	1.3	4
23	Development of a Natural Preservative from Chestnut Flowers: Ultrasound-Assisted Extraction Optimization and Functionality Assessment. Chemosensors, 2021, 9, 141.	1.8	5
24	Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application. Sustainability, 2021, 13, 6869.	1.6	4
25	Phytochemical and Antioxidant Profile of Pardina Lentil Cultivars from Different Regions of Spain. Foods, 2021, 10, 1629.	1.9	8
26	Ultrasound-Assisted Extraction of Flavonoids from Kiwi Peel: Process Optimization and Bioactivity Assessment. Applied Sciences (Switzerland), 2021, 11, 6416.	1.3	16
27	Chemical Features and Bioactivities of Lactuca canadensis L., an Unconventional Food Plant from Brazilian Cerrado. Agriculture (Switzerland), 2021, 11, 734.	1.4	3
28	Phenolic Compounds from Irradiated Olive Wastes: Optimization of the Heat-Assisted Extraction Using Response Surface Methodology. Chemosensors, 2021, 9, 231.	1.8	12
29	Extraction of Aloesin from Aloe vera Rind Using Alternative Green Solvents: Process Optimization and Biological Activity Assessment. Biology, 2021, 10, 951.	1.3	11
30	Compositional features and biological activities of wild and commercial Moringa oleifera leaves from Guinea-Bissau. Food Bioscience, 2021, 43, 101300.	2.0	4
31	Cytinus hypocistis (L.) L.: Optimised heat/ultrasound-assisted extraction of tannins by response surface methodology. Separation and Purification Technology, 2021, 276, 119358.	3.9	13
32	Preservation of Chocolate Muffins with Lemon Balm, Oregano, and Rosemary Extracts. Foods, 2021, 10, 165.	1.9	1
33	Phenolic Composition and Biological Properties of Cynara cardunculus L. var. altilis Petioles: Influence of the Maturity Stage. Antioxidants, 2021, 10, 1907.	2.2	10
34	Nutritional Composition and Biological Activity of Goldenberry (Physalis peruviana L.): An Emerging Fruit Crop in Portugal., 2021, 6, .		0
35	Metabolomic Profile and Biological Properties of Sea Lavender (Limonium algarvense Erben) Plants Cultivated with Aquaculture Wastewaters: Implications for Its Use in Herbal Formulations and Food Additives. Foods, 2021, 10, 3104.	1.9	11
36	Exploring the phytochemical profile of Cytinus hypocistis (L.) L. as a source of health-promoting biomolecules behind its in vitro bioactive and enzyme inhibitory properties. Food and Chemical Toxicology, 2020, 136, 111071.	1.8	17

#	Article	IF	CITATIONS
37	The dilemma of "good―and "bad―glucosinolates and the potential to regulate their content. , 2020, , 1-45.		5
38	Antioxidant Extracts of Three Russula Genus Species Express Diverse Biological Activity. Molecules, 2020, 25, 4336.	1.7	15
39	Phytochemical Composition and Nutritional Value of Pot-Grown Turnip-Rooted and Plain and Curly-Leafed Parsley Cultivars. Agronomy, 2020, 10, 1416.	1.3	9
40	Valorisation of table tomato crop by-products: Phenolic profiles and in vitro antioxidant and antimicrobial activities. Food and Bioproducts Processing, 2020, 124, 307-319.	1.8	31
41	Effect of Ionizing Radiation and Refrigeration on the Antioxidants of Strawberries. Food and Bioprocess Technology, 2020, 13, 1516-1527.	2.6	17
42	Extraction of Anthocyanins from Red Raspberry for Natural Food Colorants Development: Processes Optimization and In Vitro Bioactivity. Processes, 2020, 8, 1447.	1.3	28
43	Effect of Saline Conditions on Chemical Profile and the Bioactive Properties of Three Red-Colored Basil Cultivars. Agronomy, 2020, 10, 1824.	1.3	7
44	Recovery of Anthocyanins from Passion Fruit Epicarp for Food Colorants: Extraction Process Optimization and Evaluation of Bioactive Properties. Molecules, 2020, 25, 3203.	1.7	26
45	The Effect of Nitrogen Input on Chemical Profile and Bioactive Properties of Green- and Red-Colored Basil Cultivars. Antioxidants, 2020, 9, 1036.	2.2	15
46	Fighting Iron-Deficiency Anemia: Innovations in Food Fortificants and Biofortification Strategies. Foods, 2020, 9, 1871.	1.9	32
47	Bioactive Properties and Phenolic Compound Profiles of Turnip-Rooted, Plain-Leafed and Curly-Leafed Parsley Cultivars. Molecules, 2020, 25, 5606.	1.7	22
48	Compositional Features of the "Kweli―Red Raspberry and Its Antioxidant and Antimicrobial Activities. Foods, 2020, 9, 1522.	1.9	17
49	Watercress., 2020, , 197-219.		1
50	Betacyanins from Gomphrena globosa L. flowers: Incorporation in cookies as natural colouring agents. Food Chemistry, 2020, 329, 127178.	4.2	18
51	Biotransformation of rice and sunflower side-streams by dikaryotic and monokaryotic strains of Pleurotus sapidus: Impact on phenolic profiles and bioactive properties. Food Research International, 2020, 132, 109094.	2.9	14
52	Anthocyanin-rich extract of jabuticaba epicarp as a natural colorant: Optimization of heat- and ultrasound-assisted extractions and application in a bakery product. Food Chemistry, 2020, 316, 126364.	4.2	87
53	Seasonal variation of bioactive properties and phenolic composition of Cynara cardunculus var. altilis. Food Research International, 2020, 134, 109281.	2.9	18

Chemical composition and in vitro biological activities of cardoon (Cynara cardunculus L. var. altilis) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	Citations
55	Phenolic composition and biological activities of the in vitro cultured endangered Eryngium viviparum J. Gay. Industrial Crops and Products, 2020, 148, 112325.	2.5	8
56	The use of gamma radiation for extractability improvement of bioactive compounds in olive oil wastes. Science of the Total Environment, 2020, 727, 138706.	3.9	21
57	Effect of Natural Preservatives on the Nutritional Profile, Chemical Composition, Bioactivity and Stability of a Nutraceutical Preparation of Aloe arborescens. Antioxidants, 2020, 9, 281.	2.2	3
58	Phenolic composition and antioxidant properties of ex-situ conserved tomato (Solanum lycopersicum) Tj ETQqC	0 0 0 rgBT /	/Overlock 10 1
59	Compositional Features and Bioactive Properties of Aloe vera Leaf (Fillet, Mucilage, and Rind) and Flower. Antioxidants, 2019, 8, 444.	2.2	56
60	<i>Calluna vulgaris</i> (L.) Hull: chemical characterization, evaluation of its bioactive properties and effect on the vaginal microbiota. Food and Function, 2019, 10, 78-89.	2.1	36
61	The nanoencapsulation of curcuminoids extracted from <i>Curcuma longa</i> L. and an evaluation of their cytotoxic, enzymatic, antioxidant and anti-inflammatory activities. Food and Function, 2019, 10, 573-582.	2.1	28
62	Phenolic composition and antioxidant, antimicrobial and cytotoxic properties of hop (Humulus) Tj ETQq0 0 0 rg	BT <u> O</u> yerlo	ock <u>19</u> Tf 50 40
63	Stability of total folates/vitamin B9 in irradiated watercress and buckler sorrel during refrigerated storage. Food Chemistry, 2019, 274, 686-690.	4.2	8
64	In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity and genotoxicity of curcumin-loaded solid dispersions. Food and Chemical Toxicology, 2019, 125, 29-37.	1.8	51
65	Effectiveness of gamma and electron beam irradiation as preserving technologies of fresh Agaricus bisporus Portobello: A comparative study. Food Chemistry, 2019, 278, 760-766.	4.2	42
66	Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Industrial Crops and Products, 2019, 128, 496-503.	2.5	131
67	Optimization of heat- and ultrasound-assisted extraction of anthocyanins from Hibiscus sabdariffa calyces for natural food colorants. Food Chemistry, 2019, 275, 309-321.	4.2	112
68	CHAPTER 11. Innovative Legume Foods. Food Chemistry, Function and Analysis, 2019, , 235-260.	0.1	0
69	Postharvest changes in the phenolic profile of watercress induced by post-packaging irradiation and modified atmosphere packaging. Food Chemistry, 2018, 254, 70-77.	4.2	15
70	Cold extraction of phenolic compounds from watercress by high hydrostatic pressure: Process modelling and optimization. Separation and Purification Technology, 2018, 192, 501-512.	3.9	59
71	Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition, 2017, 57, 2095-2111.	5.4	109
72	Infusions of gamma irradiated Aloysia citrodora L. and Mentha x piperita L.: Effects on phenolic composition, cytotoxicity, antibacterial and virucidal activities. Industrial Crops and Products, 2017, 97, 582-590.	2.5	18

#	Article	IF	Citations
73	Valorisation of tomato wastes for development of nutrient-rich antioxidant ingredients: A sustainable approach towards the needs of the today's society. Innovative Food Science and Emerging Technologies, 2017, 41, 160-171.	2.7	62
74	Effects of gamma radiation on cork wastewater: Antioxidant activity and toxicity. Chemosphere, 2017, 169, 139-145.	4.2	19
75	Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today's society. Food and Chemical Toxicology, 2017, 110, 165-188.	1.8	114
76	Is Gamma Radiation Suitable to Preserve Phenolic Compounds and to Decontaminate Mycotoxins in Aromatic Plants? A Case-Study with Aloysia citrodora Pal \tilde{A}_i u. Molecules, 2017, 22, 347.	1.7	31
77	Ellagitannin-rich bioactive extracts of Tuberaria lignosa: insights into the radiation-induced effects in the recovery of high added-value compounds. Food and Function, 2017, 8, 2485-2499.	2.1	6
78	Chapter 12. Methods Combined with Irradiation for Food Preservation. Food Chemistry, Function and Analysis, 2017, , 237-279.	0.1	0
79	Alimentos tradicionais e inovação: uso de atmosferas modificadas e radiação ionizante na conservação da qualidade de azedas (Rumex sp.). Revista De Ciências Agrárias, 2017, 40, S160-S168.	0.2	0
80	Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters. Molecules, 2016, 21, 467.	1.7	7
81	Post-harvest treatment of cherry tomatoes by gamma radiation: Microbial and physicochemical parameters evaluation. Innovative Food Science and Emerging Technologies, 2016, 36, 1-9.	2.7	44
82	Optimization of microwave-assisted extraction of hydrophilic and lipophilic antioxidants from a surplus tomato crop by response surface methodology. Food and Bioproducts Processing, 2016, 98, 283-298.	1.8	33
83	Suitability of gamma irradiation for preserving fresh-cut watercress quality during cold storage. Food Chemistry, 2016, 206, 50-58.	4.2	39
84	Modified atmosphere packaging and post-packaging irradiation of Rumex induratus leaves: a comparative study of postharvest quality changes. Journal of Food Science and Technology, 2016, 53, 2943-2956.	1.4	10
85	Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: A nutraceutical-oriented optimization study. Separation and Purification Technology, 2016, 164, 114-124.	3.9	106
86	Postharvest quality changes in fresh-cut watercress stored under conventional and inert gas-enriched modified atmosphere packaging. Postharvest Biology and Technology, 2016, 112, 55-63.	2.9	29
87	Combined effects of gamma-irradiation and preparation method on antioxidant activity and phenolic composition of Tuberaria lignosa. RSC Advances, 2015, 5, 14756-14767.	1.7	8
88	Variation in organic acids content in Tuberaria lignosa extracts induced by ionizing radiation and extraction procedures. Planta Medica, 2014, 80, .	0.7	1
89	Characterization and Quantification of Phenolic Compounds in Four Tomato (Lycopersicon) Tj ETQq1 1 0.7843 Nutrition, 2012, 67, 229-234.	14 rgBT /O 1.4	verlock 10 Tf 92
90	Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer' varieties in Northeastern Portugal homegardens. Food and Chemical Toxicology, 2012, 50, 829-834.	1.8	140

#	Article	IF	CITATIONS
91	Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignosa samples: Effects of drying and oral preparation methods. Food Chemistry, 2012, 135, 1028-1035.	4.2	68
92	Influence of the drying method in the antioxidant potential and chemical composition of four shrubby flowering plants from the tribe Genisteae (Fabaceae). Food and Chemical Toxicology, 2011, 49, 2983-2989.	1.8	56