

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1207999/publications.pdf Version: 2024-02-01

Mili

#	Article	IF	CITATIONS
1	Strikingly high amount of tricin-lignin observed from vanilla (<i>Vanilla planifolia</i>) aerial roots. Green Chemistry, 2022, 24, 259-270.	4.6	8
2	Enhancing Lignin Dispersion and Bioconversion by Eliminating Thermal Sterilization. ACS Sustainable Chemistry and Engineering, 2022, 10, 3245-3254.	3.2	4
3	Lignin biorefinery: Lignin source, isolation, characterization, and bioconversion. Advances in Bioenergy, 2022, , 211-270.	0.5	2
4	Synthesis and Characterization of Lignin-grafted-poly(Îμ-caprolactone) from Different Biomass Sources. New Biotechnology, 2021, 60, 189-199.	2.4	18
5	Influence of plasticizers on thermal and mechanical properties of biocomposite filaments made from lignin and polylactic acid for 3D printing. Composites Part B: Engineering, 2021, 205, 108483.	5.9	71
6	Catalytic degradation of waste rubbers and plastics over zeolites to produce aromatic hydrocarbons. Journal of Cleaner Production, 2021, 309, 127469.	4.6	35
7	Degradation of aromatic compounds and lignin by marine protist Thraustochytrium striatum. Process Biochemistry, 2021, 107, 13-17.	1.8	8
8	Wood-reinforced composites by stereolithography with the stress whitening behavior. Materials and Design, 2021, 206, 109773.	3.3	18
9	Crossâ€Linked Nanocellulosic Materials and Their Applications. ChemSusChem, 2020, 13, 78-87.	3.6	51
10	Overexpression of a <i>Prefoldin β</i> subunit gene reduces biomass recalcitrance in the bioenergy crop <i>Populus</i> . Plant Biotechnology Journal, 2020, 18, 859-871.	4.1	17
11	Simultaneous depolymerization and fermentation of lignin into value-added products by the marine protist, Thraustochytrium striatum. Algal Research, 2020, 46, 101773.	2.4	6
12	Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering, 2020, 200, 108254.	5.9	323
13	Synergistic enhancement of nanocellulose foam with dual in situ mineralization and crosslinking reaction. International Journal of Biological Macromolecules, 2020, 165, 3198-3205.	3.6	2
14	The effect of switchgrass plant cell wall properties on its deconstruction by thermochemical pretreatments coupled with fungal enzymatic hydrolysis or <i>Clostridium thermocellum</i> consolidated bioprocessing. Green Chemistry, 2020, 22, 7924-7945.	4.6	25
15	Increasing the Carbohydrate Output of Bamboo Using a Combinatorial Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 7380-7393.	3.2	41
16	Promoting Aromatic Hydrocarbon Formation via Catalytic Pyrolysis of Polycarbonate Wastes over Fe- and Ce-Loaded Aluminum Oxide Catalysts. Environmental Science & Technology, 2020, 54, 8390-8400.	4.6	39
17	A biomass pretreatment using cellulose-derived solvent Cyrene. Green Chemistry, 2020, 22, 2862-2872.	4.6	77
18	Natural deep eutectic solvent mediated extrusion for continuous high-solid pretreatment of lignocellulosic biomass. Green Chemistry, 2020, 22, 6372-6383.	4.6	58

Mi Li

#	Article	lF	CITATIONS
19	Enhanced BTEX formation via catalytic fast pyrolysis of styrene-butadiene rubber: Comparison of different catalysts. Fuel, 2020, 278, 118322.	3.4	21
20	Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. Applied Sciences (Switzerland), 2020, 10, 4345.	1.3	249
21	Synthesis, Characterization, and Utilization of a Lignin-Based Adsorbent for Effective Removal of Azo Dye from Aqueous Solution. ACS Omega, 2020, 5, 2865-2877.	1.6	91
22	The effect of lignin degradation products on the generation of pseudo-lignin during dilute acid pretreatment. Industrial Crops and Products, 2020, 146, 112205.	2.5	49
23	Black Liquor Valorization by Using Marine Protist Thraustochytrium striatum and the Preliminary Metabolic Mechanism Study. ACS Sustainable Chemistry and Engineering, 2020, 8, 1786-1796.	3.2	5
24	Mechanistic Insight into Lignin Slow Pyrolysis by Linking Pyrolysis Chemistry and Carbon Material Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 15843-15854.	3.2	22
25	Catalytic conversion of rubber wastes to produce aromatic hydrocarbons over USY zeolites: Effect of SiO2/Al2O3 mole ratio. Energy Conversion and Management, 2019, 197, 111857.	4.4	31
26	Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2/ĺ³-Al2O3 and HZSM-5. Energy Conversion and Management, 2019, 196, 759-767.	4.4	56
27	Recycling benzene and ethylbenzene from in-situ catalytic fast pyrolysis of plastic wastes. Energy Conversion and Management, 2019, 200, 112088.	4.4	46
28	Overexpression of a serine hydroxymethyltransferase increases biomass production and reduces recalcitrance in the bioenergy crop <i>Populus</i> . Sustainable Energy and Fuels, 2019, 3, 195-207.	2.5	27
29	Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass. Communications Biology, 2019, 2, 22.	2.0	35
30	Stereolithography 3D Printing of Lignin-Reinforced Composites with Enhanced Mechanical Properties. ACS Omega, 2019, 4, 20197-20204.	1.6	58
31	Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system. Energy Conversion and Management, 2019, 180, 60-71.	4.4	79
32	Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy, 2018, 123, 664-674.	4.3	121
33	Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nature Biotechnology, 2018, 36, 249-257.	9.4	136
34	Investigation of composition, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thraustochytrium striatum. Carbohydrate Polymers, 2018, 195, 515-524.	5.1	38
35	Understanding Lignin Fractionation and Characterization from Engineered Switchgrass Treated by an Aqueous Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2018, 6, 6612-6623.	3.2	56
36	Fast Fractionation of Technical Lignins by Organic Cosolvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 6064-6072.	3.2	84

Mi Li

#	Article	IF	CITATIONS
37	Significance of Lignin S/G Ratio in Biomass Recalcitrance of <i>Populus trichocarpa</i> Variants for Bioethanol Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 2162-2168.	3.2	100
38	The Nature of Hololignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 957-964.	3.2	23
39	Linking lignin source with structural and electrochemical properties of lignin-derived carbon materials. RSC Advances, 2018, 8, 38721-38732.	1.7	42
40	Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks. Biotechnology for Biofuels, 2018, 11, 304.	6.2	63
41	Catalytic Conversion of Bamboo Sawdust over ZrO ₂ –CeO ₂ /γ-Al ₂ O ₃ to Produce Ketonic Hydrocarbon Precursors and Furans. ACS Sustainable Chemistry and Engineering, 2018, 6, 13797-13806.	3.2	20
42	Porous artificial bone scaffold synthesized from a facile in situ hydroxyapatite coating and crosslinking reaction of crystalline nanocellulose. Materialia, 2018, 4, 237-246.	1.3	27
43	Insights of Ethanol Organosolv Pretreatment on Lignin Properties of <i>Broussonetia papyrifera</i> . ACS Sustainable Chemistry and Engineering, 2018, 6, 14767-14773.	3.2	49
44	Functional Analysis of Cellulose Synthase CesA4 and CesA6 Genes in Switchgrass (Panicum virgatum) by Overexpression and RNAi-Mediated Gene Silencing. Frontiers in Plant Science, 2018, 9, 1114.	1.7	34
45	A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment. Biotechnology for Biofuels, 2018, 11, 96.	6.2	29
46	Characterization and Catalytic Transfer Hydrogenolysis of Deep Eutectic Solvent Extracted Sorghum Lignin to Phenolic Compounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 10408-10420.	3.2	62
47	³¹ P NMR Chemical Shifts of Solvents and Products Impurities in Biomass Pretreatments. ACS Sustainable Chemistry and Engineering, 2018, 6, 1265-1270.	3.2	32
48	³¹ P NMR Characterization of Tricin and Its Structurally Similar Flavonoids. ChemistrySelect, 2017, 2, 3557-3561.	0.7	14
49	Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chemistry, 2017, 19, 2006-2016.	4.6	145
50	Characterization of products from hydrothermal carbonization of pine. Bioresource Technology, 2017, 244, 78-83.	4.8	72
51	Adsorption of cellobiohydrolases I onto lignin fractions from dilute acid pretreated Broussonetia papyrifera. Bioresource Technology, 2017, 244, 957-962.	4.8	25
52	Lignin Exhibits Recalcitranceâ€Associated Features Following the Consolidated Bioprocessing of Populus trichocarpa Natural Variants. ChemistrySelect, 2017, 2, 10642-10647.	0.7	3
53	Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass. Biotechnology for Biofuels, 2017, 10, 12.	6.2	30
54	An Inâ€Depth Understanding of Biomass Recalcitrance Using Natural Poplar Variants as the Feedstock. ChemSusChem, 2017, 10, 139-150.	3.6	106

Mi Li

#	Article	IF	CITATIONS
55	Comparative evaluation of Populus variants total sugar release and structural features following pretreatment and digestion by two distinct biological systems. Biotechnology for Biofuels, 2017, 10, 292.	6.2	19
56	The effect of liquid hot water pretreatment on the chemical–structural alteration and the reduced recalcitrance in poplar. Biotechnology for Biofuels, 2017, 10, 237.	6.2	88
57	Adding tetrahydrofuran to dilute acid pretreatment provides new insights into substrate changes that greatly enhance biomass deconstruction by Clostridium thermocellum and fungal enzymes. Biotechnology for Biofuels, 2017, 10, 252.	6.2	43
58	Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance. Frontiers in Chemistry, 2016, 4, 45.	1.8	279
59	Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis. Journal of Analytical and Applied Pyrolysis, 2016, 122, 95-105.	2.6	57
60	Elucidating Structural Characteristics of Biomass using Solution‣tate 2 D NMR with a Mixture of Deuterated Dimethylsulfoxide and Hexamethylphosphoramide. ChemSusChem, 2016, 9, 1090-1095.	3.6	59
61	The occurrence of tricin and its derivatives in plants. Green Chemistry, 2016, 18, 1439-1454.	4.6	77
62	Physicochemical Structural Changes of Cellulosic Substrates during Enzymatic Saccharification. Journal of Applied Biotechnology & Bioengineering, 2016, 1, .	0.0	2
63	Modeling of the time-dependent strain response of electroactive NCC-PEO and PVDF composites. , 2015, , .		0
64	Remarkable solvent and extractable lignin effects on enzymatic digestibility of organosolv pretreated hardwood. Bioresource Technology, 2014, 156, 92-99.	4.8	68
65	Distinct Roles of Residual Xylan and Lignin in Limiting Enzymatic Hydrolysis of Organosolv Pretreated Loblolly Pine and Sweetgum. Journal of Agricultural and Food Chemistry, 2013, 61, 646-654.	2.4	41