
Dwight V Nissley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1207997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RAS Proteins and Their Regulators in Human Disease. Cell, 2017, 170, 17-33.	28.9	1,262
2	KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. Nature Communications, 2021, 12, 1176.	12.8	107
3	Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions. Scientific Reports, 2015, 5, 15916.	3.3	65
4	Structures of N-terminally processed KRAS provide insight into the role of N-acetylation. Scientific Reports, 2019, 9, 10512.	3.3	47
5	Machine learning–driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	44
6	KRAS Prenylation Is Required for Bivalent Binding with Calmodulin in a Nucleotide-Independent Manner. Biophysical Journal, 2019, 116, 1049-1063.	0.5	41
7	Structural Insights into the SPRED1-Neurofibromin-KRAS Complex and Disruption of SPRED1-Neurofibromin Interaction by Oncogenic EGFR. Cell Reports, 2020, 32, 107909.	6.4	41
8	Quantitative biophysical analysis defines key components modulating recruitment of the GTPase KRAS to the plasma membrane. Journal of Biological Chemistry, 2019, 294, 2193-2207.	3.4	38
9	Membrane curvature sensing of the lipid-anchored K-Ras small GTPase. Life Science Alliance, 2019, 2, e201900343.	2.8	35
10	Uncovering a membrane-distal conformation of KRAS available to recruit RAF to the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24258-24268.	7.1	34
11	A massively parallel infrastructure for adaptive multiscale simulations. , 2019, , .		32
12	Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. Journal of Biological Chemistry, 2020, 295, 1105-1119.	3.4	25
13	Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. Journal of Biological Chemistry, 2020, 295, 1105-1119.	3.4	25
14	Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior. ELife, 2020, 9, .	6.0	23
15	Insights into the Cross Talk between Effector and Allosteric Lobes of KRAS from Methyl Conformational Dynamics. Journal of the American Chemical Society, 2022, 144, 4196-4205.	13.7	14
16	RAS at 40: Update from the RAS Initiative. Cancer Discovery, 2022, 12, 895-898.	9.4	12
17	Exploring CRD mobility during RAS/RAF engagement at the membrane. Biophysical Journal, 2022, 121, 3630-3650.	0.5	9
18	Classical RAS proteins are not essential for paradoxical ERK activation induced by RAF inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8

#	Article	IF	CITATIONS
19	Recapitulation of cell-like KRAS4b membrane dynamics on complex biomimetic membranes. IScience, 2022, 25, 103608.	4.1	5