Soonnam Kwon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12079047/publications.pdf

Version: 2024-02-01

567281 434195 1,157 32 15 31 citations h-index g-index papers 33 33 33 1560 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hole Dynamics in Photoexcited Hematite Studied with Femtosecond Oxygen K-edge X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 4207-4214.	4.6	5
2	Carrier-specific dynamics in 2H-MoTe2 observed by femtosecond soft x-ray absorption spectroscopy using an x-ray free-electron laser. Structural Dynamics, 2021, 8, 014501.	2.3	14
3	Femtosecond Charge Density Modulations in Photoexcited CuWO ₄ . Journal of Physical Chemistry C, 2021, 125, 7329-7336.	3.1	6
4	Investigation of Nonequilibrium Electronic Dynamics of Warm Dense Copper with Femtosecond X-Ray Absorption Spectroscopy. Physical Review Letters, 2021, 127, 175003.	7.8	8
5	Direct observation of the electronic states of photoexcited hematite with ultrafast 2p3d X-ray absorption spectroscopy and resonant inelastic X-ray scattering. Physical Chemistry Chemical Physics, 2020, 22, 2685-2692.	2.8	26
6	Time-resolved resonant elastic soft x-ray scattering at Pohang Accelerator Laboratory X-ray Free Electron Laser. Review of Scientific Instruments, 2020, 91, 083904.	1.3	14
7	Femtosecond soft X-ray absorption spectroscopy of warm dense matter at the PAL-XFEL. Journal of Synchrotron Radiation, 2020, 27, 953-958.	2.4	4
8	Scientific instruments for soft X-ray photon-in/photon-out spectroscopy on the PAL-XFEL. Journal of Synchrotron Radiation, 2019, 26, 1031-1036.	2.4	7
9	Soft X-ray harmonic lasing self-seeded free electron laser at Pohang Accelerator Laboratory X-ray free electron laser. Applied Physics Letters, 2018, 112, .	3.3	6
10	PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results. Review of Scientific Instruments, 2018, 89, 055105.	1.3	23
11	Construction and Commissioning of PAL-XFEL Facility. Applied Sciences (Switzerland), 2017, 7, 479.	2.5	108
12	Modeling angle-resolved photoemission of graphene and black phosphorus nano structures. Scientific Data, 2016, 3, 160031.	5.3	1
13	Dynamics of Molecular Orientation Observed Using Angle Resolved Photoemission Spectroscopy during Deposition of Pentacene on Graphite. Analytical Chemistry, 2016, 88, 4565-4570.	6.5	8
14	Understanding the Unique Electronic Properties of Nano Structures Using Photoemission Theory. Scientific Reports, 2015, 5, 17834.	3.3	4
15	Carborane Dyads for Photoinduced Electron Transfer: Photophysical Studies on Carbazole and Phenylâ€ <i>o</i> i>a€carborane Molecular Assemblies. Chemistry - A European Journal, 2014, 20, 5953-5960.	3.3	80
16	Order–Disorder Transition in the Molecular Orientation during Initial Growth of Organic Thin Film. ACS Applied Materials & Interfaces, 2013, 5, 1896-1901.	8.0	4
17	Effects of intermolecular interaction on the energy distribution of valance electronic states of a carbazole-based material in amorphous thin films. Journal of Chemical Physics, 2012, 136, 204706.	3.0	9
18	Carborane-Based Optoelectronically Active Organic Molecules: Wide Band Gap Host Materials for Blue Phosphorescence. Journal of the American Chemical Society, 2012, 134, 17982-17990.	13.7	224

#	Article	IF	CITATIONS
19	Carborane Photochemistry Triggered by Aryl Substitution: Carboraneâ€Based Dyads with Phenyl Carbazoles. Angewandte Chemie - International Edition, 2012, 51, 2677-2680.	13.8	216
20	Significance of irreversible formation of "electromer―in 1-bis[4-[N,N-di(4-tolyl)amino]phenyl]-cyclohexane layer associated with the stability of deep blue phosphorescent organic light emitting diodes. Organic Electronics, 2012, 13, 645-651.	2.6	28
21	Hole Injection Enhancement by a WO3 Interlayer in Inverted Organic Light-Emitting Diodes and Their Interfacial Electronic Structures. Journal of Physical Chemistry C, 2011, 115, 6599-6604.	3.1	29
22	Materials for deep blue organic light emitting devices with ultra high thermal stability and charge mobility. Materials Research Society Symposia Proceedings, 2011, 1360, 040301.	0.1	0
23	The relationship between the device performance and hole mobility of host materials in mixed host system for deep blue phosphorescent organic light emitting devices. Organic Electronics, 2011, 12, 1973-1979.	2.6	18
24	The effect of energy level offset between Ir dopant and carbazole hosts on the emission efficiency. Applied Physics Letters, 2010, 97, 023309.	3.3	7
25	Bis(4-(4,5-diphenyl-4H-1,2,4-triazol-3-yl)phenyl)dimethylsilane as Electron-Transport Material for Deep Blue Phosphorescent OLEDs. Journal of Physical Chemistry Letters, 2010, 1, 295-299.	4.6	21
26	New technique for measuring carrier mobility using a modified boxcar integrator. Review of Scientific Instruments, 2009, 80, 096106.	1.3	2
27	Efficiency and colour optimization of carbazole based deep blue phosphorescent organic light emitting devices. Journal Physics D: Applied Physics, 2009, 42, 235107.	2.8	9
28	Silicon Based Inorganic/Organic Hybrid Materials for Deep Blue PHOLEDs. Materials Research Society Symposia Proceedings, 2009, 1197, 25.	0.1	0
29	Development of inverted OLED with top ITO anode by plasma damage-free sputtering. Thin Solid Films, 2009, 517, 4019-4022.	1.8	46
30	Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study by photoelectron spectroscopy. Organic Electronics, 2009, 10, 637-642.	2.6	68
31	Silicon-Based Blue Phosphorescence Host Materials: Structure and Photophysical Property Relationship on Methyl/Phenylsilanes Adorned with 4-(<i>N</i> Carbazolyl)phenyl Groups and Optimization of Their Electroluminescence by Peripheral 4-(<i>N</i> Carbazolyl)phenyl Numbers. Journal of Physical Chemistry C. 2009, 113, 19686-19693.	3.1	56
32	Interface studies of Aluminum, 8-hydroxyquinolatolithium (Liq) and Alq3 for inverted OLED application. Organic Electronics, 2008, 9, 407-412.	2.6	41