Paul M Bradley

List of Publications by Citations

Source: https://exaly.com/author-pdf/1207871/paul-m-bradley-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

165 65 41 5,243 h-index g-index citations papers 5.61 6.5 184 5,928 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
165	A hydrogen-based subsurface microbial community dominated by methanogens. <i>Nature</i> , 2002 , 415, 312	2 -5 0.4	361
164	Expanded Target-Chemical Analysis Reveals Extensive Mixed-Organic-Contaminant Exposure in U.S. Streams. <i>Environmental Science & Environmental Science</i>	10.3	168
163	History and Ecology of Chloroethene Biodegradation: A Review. <i>Bioremediation Journal</i> , 2003 , 7, 81-109	2.3	162
162	Influence of Oxygen and Sulfide Concentration on Nitrogen Uptake Kinetics in Spartina Alterniflora. <i>Ecology</i> , 1990 , 71, 282-287	4.6	129
161	Anaerobic Mineralization of Vinyl Chloride in Fe(III)-Reducing, Aquifer Sediments. <i>Environmental Science & Environmental Scie</i>	10.3	117
160	Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 3102-5	4.8	117
159	Comparison of Eh and H2 Measurements for Delineating Redox Processes in a Contaminated Aquifer. <i>Environmental Science & Environmental Science & Envir</i>	10.3	110
158	Aerobic Mineralization of MTBE and tert-Butyl Alcohol by Stream-Bed Sediment Microorganisms. <i>Environmental Science & Environmental Science & Environm</i>	10.3	109
157	Measuring Rates of Biodegradation in a Contaminated Aquifer Using Field and Laboratory Methods. <i>Ground Water</i> , 1996 , 34, 691-698	2.4	107
156	Fate of sulfamethoxazole, 4-nonylphenol, and 17beta-estradiol in groundwater contaminated by wastewater treatment plant effluent. <i>Environmental Science & Environmental & Environment</i>	10.3	102
155	Effects of nutrient loading on the carbon balance of coastal wetland sediments. <i>Limnology and Oceanography</i> , 1999 , 44, 699-702	4.8	94
154	Biotransformation of caffeine, cotinine, and nicotine in stream sediments: implications for use as wastewater indicators. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 1116-21	3.8	87
153	Relative Importance of Ion Exclusion, Secretion and Accumulation inSpartina alternifloraLoisel <i>Journal of Experimental Botany</i> , 1991 , 42, 1525-1532	7	84
152	Kinetics of DCE and VC Mineralization under Methanogenic and Fe(III)-Reducing Conditions. <i>Environmental Science & Environmental Science & Environment</i>	10.3	82
151	The influence of salinity on the kinetics of NH uptake in Spartina alterniflora. <i>Oecologia</i> , 1991 , 85, 375-3	80 9	79
150	Biodegradation of 17beta-estradiol, estrone and testosterone in stream sediments. <i>Environmental Science & Environmental Scien</i>	10.3	77
149	Microbial degradation of chloroethenes in groundwater systems. <i>Hydrogeology Journal</i> , 2000 , 8, 104-11	1 3.1	74

148	Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions. <i>Environmental Science & Environmental Science & Env</i>	10.3	74	
147	Urban Stormwater: An Overlooked Pathway of Extensive Mixed Contaminants to Surface and Groundwaters in the United States. <i>Environmental Science & Environmental Science & Env</i>	10.3	73	
146	Effect of Contaminant Concentration on Aerobic Microbial Mineralization of DCE and VC in Stream-Bed Sediments. <i>Environmental Science & Environmental </i>	10.3	73	
145	Biodegradation and attenuation of steroidal hormones and alkylphenols by stream biofilms and sediments. <i>Environmental Science & Environmental Science</i>	10.3	71	
144	Methyl t-butyl ether mineralization in surface-water sediment microcosms under denitrifying conditions. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 1975-8	4.8	71	
143	Widespread potential for microbial MTBE degradation in surface-water sediments. <i>Environmental Science & Environmental Science</i>	10.3	71	
142	Effect of redox conditions on MTBE biodegradation in surface water sediments. <i>Environmental Science & Environmental &</i>	10.3	70	
141	Microbial mineralization of VC and DCE under different terminal electron accepting conditions. <i>Anaerobe</i> , 1998 , 4, 81-7	2.8	69	
140	Carbon limitation of denitrification rates in an anaerobic groundwater system. <i>Environmental Science & Environmental </i>	10.3	67	
139	Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer. <i>Applied and Environmental Microbiology</i> , 1991 , 57, 57-63	4.8	67	
138	Occurrence and In Vitro Bioactivity of Estrogen, Androgen, and Glucocorticoid Compounds in a Nationwide Screen of United States Stream Waters. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	66	
137	Fate of MTBE Relative to Benzene in a Gasoline-Contaminated Aquifer (1993 9 8). <i>Ground Water Monitoring and Remediation</i> , 1998 , 18, 93-102	1.4	60	
136	Microbial transformation of nitroaromatics in surface soils and aquifer materials. <i>Applied and Environmental Microbiology</i> , 1994 , 60, 2170-5	4.8	60	
135	Factors affecting microbial 2,4,6-trinitrotoluene mineralization in contaminated soil. <i>Environmental Science & Environmental </i>	10.3	57	
134	Metformin and Other Pharmaceuticals Widespread in Wadeable Streams of the Southeastern United States. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 243-249	11	56	
133	Evidence for Enhanced Mineral Dissolution in Organic Acid-Rich Shallow Ground Water. <i>Ground Water</i> , 1995 , 33, 207-216	2.4	53	
132	Rapid evolution of redox processes in a petroleum hydrocarbon-contaminated aquifer. <i>Ground Water</i> , 2002 , 40, 353-60	2.4	52	
131	Anaerobic Oxidation of [1,2-C]Dichloroethene under Mn(IV)-Reducing Conditions. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 1560-2	4.8	52	

130	TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions. <i>Environmental Science & Environmental S</i>	10.3	50
129	Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream. <i>Environmental Pollution</i> , 2014 , 193, 173-180	9.3	49
128	Distinguishing iron-reducing from sulfate-reducing conditions. <i>Ground Water</i> , 2009 , 47, 300-5	2.4	47
127	Acetogenic Microbial Degradation of Vinyl Chloride. <i>Environmental Science & Environmental Science & E</i>	10.3	45
126	Potential Toxicity of Complex Mixtures in Surface Waters from a Nationwide Survey of United States Streams: Identifying in Vitro Bioactivities and Causative Chemicals. <i>Environmental Science & Environmental Science</i>	10.3	43
125	Methane As a Product of Chloroethene Biodegradation under Methanogenic Conditions. <i>Environmental Science & Environmental Scie</i>	10.3	42
124	Spatial patterns of mercury in macroinvertebrates and fishes from streams of two contrasting forested landscapes in the eastern United States. <i>Ecotoxicology</i> , 2011 , 20, 1530-42	2.9	41
123	Microbial acetogenesis as a source of organic acids in ancient Atlantic Coastal Plain sediments. <i>Geology</i> , 1996 , 24, 925	5	41
122	Aerobic Microbial Mineralization of Dichloroethene as Sole Carbon Substrate. <i>Environmental Science & Environmental Science & </i>	10.3	41
121	Ground Water Chlorinated Ethenes in Tree Trunks: Case Studies, Influence of Recharge, and Potential Degradation Mechanism. <i>Ground Water Monitoring and Remediation</i> , 2010 , 24, 124-138	1.4	40
120	Physical characteristics of salt marsh sediments: ecological implications. <i>Marine Ecology - Progress Series</i> , 1990 , 61, 245-252	2.6	40
119	Pharmaceuticals, hormones, pesticides, and other bioactive contaminants in water, sediment, and tissue from Rocky Mountain National Park, 2012-2013. <i>Science of the Total Environment</i> , 2018 , 643, 651-	-673 ²	38
118	Rapid toluene mineralization by aquifer microorganisms at adak, alaska: implications for intrinsic bioremediation in cold environments. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	36
117	Effect of salinity on the critical nitrogen concentration of Spartina alterniflora Loisel. <i>Aquatic Botany</i> , 1992 , 43, 149-161	1.8	36
116	Behavior of a chlorinated ethene plume following source-area treatment with Fenton's reagent. <i>Ground Water Monitoring and Remediation</i> , 2005 , 25, 131-141	1.4	34
115	MTBE, TBA, and TAME attenuation in diverse hyporheic zones. <i>Ground Water</i> , 2010 , 48, 30-41	2.4	33
114	Landfill leachate contributes per-/poly-fluoroalkyl substances (PFAS) and pharmaceuticals to municipal wastewater. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 1300-1311	4.2	32
113	Landscape controls on total and methyl Hg in the upper Hudson River basin, New York, USA. Journal of Geophysical Research, 2012 , 117,		32

(2000-2008)

112	Potential for 4-n-nonylphenol biodegradation in stream sediments. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 260-5	3.8	32	
111	Role for Acetotrophic Methanogens in Methanogenic Biodegradation of Vinyl Chloride. <i>Environmental Science & Environmental Sci</i>	10.3	32	
110	Influence of Electron Donor on the Minimum Sulfate Concentration Required for Sulfate Reduction in a Petroleum Hydrocarbon-Contaminated Aquifer. <i>Environmental Science & Emp; Technology</i> , 1996 , 30, 1377-1381	10.3	32	
109	Biochemical indicators for the bioavailability of organic carbon in ground water. <i>Ground Water</i> , 2009 , 47, 108-21	2.4	31	
108	Spatial and seasonal variability of dissolved methylmercury in two stream basins in the eastern United States. <i>Environmental Science & Environmental </i>	10.3	28	
107	Field and laboratory evidence for intrinsic biodegradation of vinyl chloride contamination in a Fe(III)-reducing aquifer. <i>Journal of Contaminant Hydrology</i> , 1998 , 31, 111-127	3.9	28	
106	Selecting remediation goals by assessing the natural attenuation capacity of groundwater systems. <i>Bioremediation Journal</i> , 1998 , 2, 227-238	2.3	28	
105	Effects of Carbon and Nitrate on Denitrification in Bottom Sediments of an Effluent-Dominated River. <i>Water Resources Research</i> , 1995 , 31, 1063-1068	5.4	27	
104	Specific ultra-violet absorbance as an indicator of mercury sources in an Adirondack River basin. <i>Biogeochemistry</i> , 2013 , 113, 451-466	3.8	26	
103	Potential for Intrinsic Bioremediation of a DNT-Contaminated Aquifer. <i>Ground Water</i> , 1997 , 35, 12-17	2.4	26	
102	Biodegradation of N-nitrosodimethylamine in Soil from a Water Reclamation Facility. <i>Bioremediation Journal</i> , 2005 , 9, 115-120	2.3	26	
101	Mixed-chemical exposure and predicted effects potential in wadeable southeastern USA streams. <i>Science of the Total Environment</i> , 2019 , 655, 70-83	10.2	26	
100	Reconnaissance of Mixed Organic and Inorganic Chemicals in Private and Public Supply Tapwaters at Selected Residential and Workplace Sites in the United States. <i>Environmental Science & Technology</i> , 2018 , 52, 13972-13985	10.3	25	
99	Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater. <i>Ground Water</i> , 2012 , 50, 230-41	2.4	24	
98	Microbial Mineralization of Dichloroethene and Vinyl Chloride under Hypoxic Conditions. <i>Ground Water Monitoring and Remediation</i> , 2011 , 31, 39-49	1.4	24	
97	RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine) Biodegradation in Aquifer Sediments under Manganese-Reducing Conditions. <i>Bioremediation Journal</i> , 2005 , 9, 1-8	2.3	24	
96	Bioactive contaminants of emerging concern in National Park waters of the northern Colorado Plateau, USA. <i>Science of the Total Environment</i> , 2018 , 636, 910-918	10.2	22	
95	BIODEGRADATION OF DISINFECTION BYPRODUCTS AS A POTENTIAL REMOVAL PROCESS DURING AQUIFER STORAGE RECOVERY1. <i>Journal of the American Water Resources Association</i> , 2000 , 36, 861-86	57 ^{2.1}	22	

94	EFFECTS OF SULFIDE ON THE GROWTH OF THREE SALT MARSH HALOPHYTES OF THE SOUTHEASTERN UNITED STATES 1989 , 76, 1707		22
93	Spatial and temporal variation in microcystin occurrence in wadeable streams in the southeastern United States. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 2281-7	3.8	21
92	Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater-facility-impacted stream reach. <i>Science of the Total Environment</i> , 2016 , 568, 916-925	10.2	21
91	Stable lead isotopes reveal a natural source of high lead concentrations to gasoline-contaminated groundwater. <i>Environmental Geology</i> , 2003 , 45, 12-22		21
90	Optimizing fish sampling for fish-mercury bioaccumulation factors. <i>Chemosphere</i> , 2015 , 135, 467-73	8.4	20
89	Microbial Mineralization of Ethene Under Sulfate-Reducing Conditions. <i>Bioremediation Journal</i> , 2002 , 6, 1-8	2.3	19
88	Influence of dietary carbon on mercury bioaccumulation in streams of the Adirondack Mountains of New York and the Coastal Plain of South Carolina, USA. <i>Ecotoxicology</i> , 2013 , 22, 60-71	2.9	18
87	Flood hydrology and methylmercury availability in coastal plain rivers. <i>Environmental Science & Environmental Science & Technology</i> , 2010 , 44, 9285-90	10.3	18
86	Rediversion salinity change in the Cooper River, South Carolina: Ecological implications. <i>Estuaries and Coasts</i> , 1990 , 13, 373		18
85	Multi-region assessment of pharmaceutical exposures and predicted effects in USA wadeable urban-gradient streams. <i>PLoS ONE</i> , 2020 , 15, e0228214	3.7	17
84	Widespread occurrence and potential for biodegradation of bioactive contaminants in Congaree National Park, USA. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 3045-3056	3.8	17
83	Assessment of natural attenuation of aromatic hydrocarbons in groundwater near a former manufactured-gas plant, South Carolina, USA. <i>Environmental Geology</i> , 1998 , 34, 279-292		17
82	Influence of Environmental Factors on Denitrification in Sediment Contaminated with JP-4 Jet Fuel. <i>Ground Water</i> , 1992 , 30, 843-848	2.4	17
81	Effect of Light on Biodegradation of Estrone, 17Estradiol, and 17Ethinylestradiol in Stream Sediment. <i>Journal of the American Water Resources Association</i> , 2014 , 50, 334-342	2.1	16
80	Effect of Hydrologic and Geochemical Conditions on Oxygen-Enhanced Bioremediation in a Gasoline-Contaminated Aquifer. <i>Bioremediation Journal</i> , 2003 , 7, 165-177	2.3	15
79	Chloroethene biodegradation in sediments at 4 degrees C. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 6414-7	4.8	15
78	Influence of Pb on microbial activity in Pb-contaminated soils. <i>Soil Biology and Biochemistry</i> , 1993 , 25, 1465-1466	7·5	15
77	Selecting Remediation Goals by Assessing the Natural Attenuation Capacity of Groundwater Systems. <i>Bioremediation Journal</i> , 1998 , 2, 227-238	2.3	15

76	Lack of Correlation between Organic Acid Concentrations and Predominant Electron-Accepting Processes in a Contaminated Aquifer. <i>Environmental Science & Environmental Science</i>	10.3	14	
75	Anoxic Mineralization: Environmental Reality or Experimental Artifact?. <i>Ground Water Monitoring and Remediation</i> , 2008 , 28, 47-49	1.4	14	
74	The Fate of Haloacetic Acids and Trihalomethanes in an Aquifer Storage and Recovery Program, Las Vegas, Nevada. <i>Ground Water</i> , 2000 , 38, 605-614	2.4	14	
73	Design and methods of the Southeast Stream Quality Assessment (SESQA), 2014. <i>US Geological Survey Open-File Report</i> ,		14	
72	Biodegradation of Chlorinated Ethenes. SERDP and ESTCP Remediation Technology Monograph Series, 2010, 39-67		14	
71	Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1087-96	3.8	13	
7º	Shallow groundwater mercury supply in a Coastal Plain stream. <i>Environmental Science & Environmental &</i>	10.3	13	
69	Intra- and inter-basin mercury comparisons: Importance of basin scale and time-weighted methylmercury estimates. <i>Environmental Pollution</i> , 2013 , 172, 42-52	9.3	13	
68	EFFECTS OF SULFIDE ON THE GROWTH OF THREE SALT MARSH HALOPHYTES OF THE SOUTHEASTERN UNITED STATES. <i>American Journal of Botany</i> , 1989 , 76, 1707-1713	2.7	13	
67	Machine Learning Models of Arsenic in Private Wells Throughout the Conterminous United States As a Tool for Exposure Assessment in Human Health Studies. <i>Environmental Science & amp; Technology</i> , 2021 , 55, 5012-5023	10.3	13	
66	Reinterpreting the Importance of Oxygen-Based Biodegradation in Chloroethene-Contaminated Groundwater. <i>Ground Water Monitoring and Remediation</i> , 2011 , 31, 50-55	1.4	12	
65	Flowpath Independent Monitoring of Reductive Dechlorination Potential in a Fractured Rock Aquifer. <i>Ground Water Monitoring and Remediation</i> , 2009 , 29, 46-55	1.4	12	
64	Inclusion of Pesticide Transformation Products Is Key to Estimating Pesticide Exposures and Effects in Small U.S. Streams. <i>Environmental Science & Environmental Science & En</i>	10.3	12	
63	Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. <i>Science of the Total Environment</i> , 2020 , 719, 137236	10.2	11	
62	Mercury in the soil of two contrasting watersheds in the eastern United States. <i>PLoS ONE</i> , 2014 , 9, e86	8557	11	
61	Accumulation of dechlorination daughter products: A valid metric of chloroethene biodegradation. <i>Remediation</i> , 2007 , 17, 7-22	1.8	11	
60	Behavior of major and trace elements in a transient surface water/groundwater system following removal of a long-term wastewater treatment facility source. <i>Science of the Total Environment</i> , 2019 , 668, 867-880	10.2	10	
59	Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: before and after plant shutdown. <i>Environmental Science: Water Research and Technology</i> , 2016 , 2, 864-874	4.2	10	

58	Assessment of Endocrine-Disrupting Chemicals Attenuation in a Coastal Plain Stream Prior to Wastewater Treatment Plant Closure. <i>Journal of the American Water Resources Association</i> , 2014 , 50, 388-400	2.1	10
57	Optimizing stream water mercury sampling for calculation of fish bioaccumulation factors. <i>Environmental Science & Environmental Science & Environment</i>	10.3	10
56	Effect of H2 and Redox Condition on Biotic and Abiotic MTBE Transformation. <i>Ground Water Monitoring and Remediation</i> , 2006 , 26, 74-81	1.4	10
55	Arsenate inhibition of denitrification in nitrate contaminated sediments. <i>Soil Biology and Biochemistry</i> , 1993 , 25, 1459-1462	7.5	10
54	Projected urban growth in the southeastern USA puts small streams at risk. <i>PLoS ONE</i> , 2019 , 14, e02227	73.47	9
53	Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data. <i>Journal of Geophysical Research</i> , 2012 , 117,		9
52	Evolution of Redox Processes in Groundwater. ACS Symposium Series, 2011, 581-597	0.4	9
51	Hydrologic significance of carbon monoxide concentrations in ground water. <i>Ground Water</i> , 2007 , 45, 272-80	2.4	9
50	Methylmercury-total mercury ratios in predator and primary consumer insects from Adirondack streams (New York, USA). <i>Ecotoxicology</i> , 2020 , 29, 1644-1658	2.9	7
49	Predictive Analysis Using Chemical-Gene Interaction Networks Consistent with Observed Endocrine Activity and Mutagenicity of U.S. Streams. <i>Environmental Science & Description (Control of Control of</i>	0 ^{10.3}	7
48	Mercury and methylmercury stream concentrations in a Coastal Plain watershed: a multi-scale simulation analysis. <i>Environmental Pollution</i> , 2014 , 187, 182-92	9.3	7
47	An empirical approach to modeling methylmercury concentrations in an Adirondack stream watershed. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2014 , 119, 1970-1984	3.7	7
46	Climate change and watershed mercury export: a multiple projection and model analysis. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 2165-74	3.8	7
45	Low-Temperature MTBE Biodegradation in Aquifer Sediments with a History of Low, Seasonal Ground Water Temperatures. <i>Ground Water Monitoring and Remediation</i> , 2006 , 26, 101-105	1.4	7
44	Does lead affect microbial metabolism in aquifer sediments under different terminal electron accepting conditions?. <i>Geomicrobiology Journal</i> , 1993 , 11, 85-94	2.5	7
43	Exposure and potential effects of pesticides and pharmaceuticals in protected streams of the US National park Service southeast region. <i>Science of the Total Environment</i> , 2020 , 704, 135431	10.2	7
42	Enhanced dichloroethene biodegradation in fractured rock under biostimulated and bioaugmented conditions 2012 , 22, 21-32		6
41	Chloroethene dechlorination in acidic groundwater: Implications for combining fenton's treatment with natural attenuation. <i>Remediation</i> , 2007 , 18, 7-19	1.8	6

40	Comment on Methane As a Product of Chloroethene Biodegradation under Methanogenic Conditions [Invironmental Science & Science	10.3	6
39	Estimated trichloroethene transformation rates due to naturally occurring biodegradation in a fractured rock aquifer 2012 , 22, 7-20		5
38	What does "water quality" mean?. <i>Ground Water</i> , 2009 , 47, 752-4	2.4	5
37	Role of Microbial Processes in Linking Sandstone Diagenesis with Organic-rich Clays. <i>Journal of Sedimentary Research</i> , 1992 , Vol. 62,	2.1	5
36	Mercury bioaccumulation studies in the National Water-Quality Assessment Programbiological data from New York and South Carolina, 2005-2009. <i>Data Series</i> ,		5
35	Chemical mixtures and environmental effects: a pilot study to assess ecological exposure and effects in streams. <i>US Geological Survey Open-File Report</i> ,		5
34	Methods used to characterize the chemical composition and biological activity of environmental waters throughout the United States, 2012-14. <i>US Geological Survey Open-File Report</i> ,		5
33	Fluvial transport of mercury, organic carbon, suspended sediment, and selected major ions in contrasting stream basins in South Carolina and New York, October 2004 to September 2009. <i>USGS Scientific Investigations Report</i> ,i-125		5
32	Public and private tapwater: Comparative analysis of contaminant exposure and potential risk, Cape Cod, Massachusetts, USA. <i>Environment International</i> , 2021 , 152, 106487	12.9	5
31	Evaluating the potential role of bioactive chemicals on the distribution of invasive Asian carp upstream and downstream from river mile 278 in the Illinois waterway. <i>Science of the Total Environment</i> , 2020 , 735, 139458	10.2	4
30	Cell-Based Metabolomics for Untargeted Screening and Prioritization of Vertebrate-Active Stressors in Streams Across the United States. <i>Environmental Science & Environmental Science & Environmental</i>	-9240	4
29	Assessing the relative bioavailability of DOC in regional groundwater systems. <i>Ground Water</i> , 2013 , 51, 363-72	2.4	4
28	Threshold amounts of organic carbon needed to initiate reductive dechlorination in groundwater systems 2012 , 22, 19-28		4
27	Effect of atrazine on potential denitrification in aquifer sediments. <i>Soil Biology and Biochemistry</i> , 1994 , 26, 523-524	7.5	4
26	Environmental settings of streams sampled for mercury in New York and South Carolina, 2005-09. <i>US Geological Survey Open-File Report</i> ,		4
25	Multi-region assessment of chemical mixture exposures and predicted cumulative effects in USA wadeable urban/agriculture-gradient streams. <i>Science of the Total Environment</i> , 2021 , 773, 145062	10.2	4
24	Is there an urban pesticide signature? Urban streams in five U.S. regions share common dissolved-phase pesticides but differ in predicted aquatic toxicity. <i>Science of the Total Environment</i> , 2021 , 793, 148453	10.2	4
23	A simple pore water hydrogen diffusion syringe sampler. <i>Ground Water</i> , 2007 , 45, 798-802	2.4	3

22	Microbial H2 Cycling Does Not Affect IH Values of Ground Water Ground Water, 2000, 38, 376-380	2.4	3
21	Scaling up watershed model parameters: flow and load simulations of the Edisto River Basin, South Carolina, 2007-09. <i>USGS Scientific Investigations Report</i> ,		3
20	Effects-Based Monitoring of Bioactive Chemicals Discharged to the Colorado River before and after a Municipal Wastewater Treatment Plant Replacement. <i>Environmental Science & Environmental &</i>	10.3	3
19	Untargeted Lipidomics for Determining Cellular and Subcellular Responses in Zebrafish () Liver Cells Following Exposure to Complex Mixtures in U.S. Streams. <i>Environmental Science & Camp; Technology</i> , 2021 , 55, 8180-8190	10.3	3
18	Effect of Wastewater Treatment Facility Closure on Endocrine Disrupting Chemicals in a Coastal Plain Stream 2016 , 26, 9-24		3
17	Feral swine as sources of fecal contamination in recreational waters. <i>Scientific Reports</i> , 2021 , 11, 4212	4.9	3
16	Reconnaissance of cumulative risk of pesticides and pharmaceuticals in Great Smoky Mountains National Park streams. <i>Science of the Total Environment</i> , 2021 , 781, 146711	10.2	3
15	Redox Conditions and the Reductive/Oxidativebiodegradation of Chlorinated Ethenes in Groundwater Systems 2004 , 373-384		2
14	Total mercury, methylmercury, and selected elements in soils of the Fishing Brook watershed, Hamilton County, New York, and the McTier Creek watershed, Aiken County, South Carolina, 2008. <i>Data Series</i> ,		2
13	Methods used for the collection and analysis of chemical and biological data for the Tapwater Exposure Study, United States, 2016 17. US Geological Survey Open-File Report,		2
12	Simulation of streamflow in the McTier Creek watershed, South Carolina. <i>USGS Scientific Investigations Report</i> ,		2
11	Comparison of Methylmercury Production and Accumulation in Sediments of the Congaree and Edisto River Basins, South Carolina, 2004-06. <i>USGS Scientific Investigations Report</i> ,		2
10	In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. <i>Science of the Total Environment</i> , 2021 , 768, 144750	10.2	2
9	Nutrient enrichment in wadeable urban streams in the Piedmont Ecoregion of the Southeastern United States. <i>Heliyon</i> , 2018 , 4, e00904	3.6	2
8	Pilot-scale expanded assessment of inorganic and organic tapwater exposures and predicted effects in Puerto Rico, USA. <i>Science of the Total Environment</i> , 2021 , 788, 147721	10.2	2
7	Multiple in-stream stressors degrade biological assemblages in five U.S. regions. <i>Science of the Total Environment</i> , 2021 , 800, 149350	10.2	2
6	Arsenic in private well water and birth outcomes in the United States <i>Environment International</i> , 2022 , 163, 107176	12.9	2
5	Perils of categorical thinking: Dxic/anoxicLonceptual model in environmental remediation 2012 , 22, 9-18		1

LIST OF PUBLICATIONS

4	Temporal variability in TiO engineered particle concentrations in rural Edisto River <i>Chemosphere</i> , 2022 , 134091	8.4	O
3	Ecological consequences of neonicotinoid mixtures in streams Science Advances, 2022, 8, eabj8182	14.3	0
2	Response to Comment on Methane As a Product of Chloroethene Biodegradation under Methanogenic Conditions [Environmental Science & Environmental Scienc	10.3	
1	Assessing the ecological functionality and integrity of natural ponds, excavated ponds and stormwater basins for conserving amphibian diversity. <i>Global Ecology and Conservation</i> , 2021 , 30, e017	'6 5 .8	