List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12077007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper vanadates: Targeted synthesis of two pure phases and use in a photoanode/cathode setup for selective photoelectrochemical conversion of carbon dioxide to liquid fuel. Materials Research Bulletin, 2022, 149, 111716.	5.2	5
2	Combining Electrosynthesis with Thermolysis: A Safe/Scalable Route to Multinary Oxide Semiconductor Films. ChemElectroChem, 2021, 8, 1251-1258.	3.4	5
3	Photoelectrochemical Reduction of CO ₂ at Poly(4â€Vinylpyridine)‧tabilized Copper(I) Oxide Semiconductor: Feasibility of Interfacial Decoration with Palladium Cocatalyst. Solar Rrl, 2021, 5, 2000705.	5.8	7
4	Naming Photoelectrochemical Processes: Why Thermodynamics Holds the Key. ACS Energy Letters, 2021, 6, 2198-2201.	17.4	9
5	Arc Synthesis, Crystal Structure, and Photoelectrochemistry of Copper(I) Tungstate. ACS Applied Materials & Interfaces, 2021, 13, 32865-32875.	8.0	11
6	Electrosynthesis of CdS/MoS ₂ Using Electrodeposited MoS <i>_x</i> : A Combined Voltammetry–Electrochemical Quartz Crystal Nanogravimetry Study. ACS Applied Energy Materials, 2021, 4, 7562-7570.	5.1	4
7	Optical, Electrochemical, and Photoelectrochemical Behavior of Copper Pyrovanadate: A Unified Theoretical and Experimental Study. Journal of Physical Chemistry C, 2021, 125, 19609-19620.	3.1	4
8	Electrosynthesis of MoTe2 Thin Films: A Combined Voltammetry-Electrochemical Quartz Crystal Microgravimetry Study of Mechanistic Aspects. Journal of the Electrochemical Society, 2020, 167, 116510.	2.9	4
9	Electrosynthesis and Properties of Crystalline and Phase-Pure Silver Orthovanadate. Journal of Physical Chemistry C, 2020, 124, 19980-19989.	3.1	8
10	Cathodic Electrodeposition of Stoichiometric Cobalt Chalcogenide Thin Films. ECS Journal of Solid State Science and Technology, 2020, 9, 041013.	1.8	1
11	Phase-Pure Copper Vanadate (α-CuV ₂ O ₆): Solution Combustion Synthesis and Characterization. Chemistry of Materials, 2020, 32, 6247-6255.	6.7	27
12	Editors' Choice—Perspective—Bipolar Photoactivity: The Anomalous Case of Electrodeposited Copper Oxide Films. Journal of the Electrochemical Society, 2020, 167, 136505.	2.9	3
13	Electrodeposition of Silver Vanadate Films: A Tale of Two Polymorphs. ChemPhysChem, 2019, 20, 2635-2646.	2.1	10
14	Rapid One-Pot Synthesis and Photoelectrochemical Properties of Copper Vanadates. ACS Applied Energy Materials, 2019, 2, 2837-2847.	5.1	34
15	Silver Oxideâ€Based Semiconductors for Solar Fuels Production and Environmental Remediation: a Solidâ€ S tate Chemistry Approach. ChemElectroChem, 2019, 6, 87-96.	3.4	15
16	Reduction of carbon dioxide at copper(I) oxide photocathode activated and stabilized by over-coating with oligoaniline. Electrochimica Acta, 2018, 265, 400-410.	5.2	23
17	One-Step Electrodeposition of Nanocrystalline TiO ₂ Films with Enhanced Photoelectrochemical Performance and Charge Storage. ACS Applied Energy Materials, 2018, 1, 851-858.	5.1	32
18	Review—Copper Oxide-Based Ternary and Quaternary Oxides: Where Solid-State Chemistry Meets Photoelectrochemistry. Journal of the Electrochemical Society, 2018, 165, H3192-H3206.	2.9	70

#	Article	IF	CITATIONS
19	On the measured optical bandgap values of inorganic oxide semiconductors for solar fuels generation. Catalysis Today, 2018, 300, 136-144.	4.4	43
20	Compositional Analysis of Electrodeposited Cobalt Selenide Thin Films Using Continuous Flow Electrochemical Quartz Crystal Microgravimetry. Journal of the Electrochemical Society, 2018, 165, D370-D374.	2.9	6
21	Bandgap-engineered quaternary M x Bi 2â^'x Ti 2 O 7 (M: Fe, Mn) semiconductor nanoparticles: Solution combustion synthesis, characterization, and photocatalysis. Applied Catalysis B: Environmental, 2017, 208, 148-160.	20.2	34
22	Composite copper oxide–copper bromide films for the selective electroreduction of carbon dioxide. Journal of Materials Research, 2017, 32, 1727-1734.	2.6	13
23	Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids. Journal of the American Chemical Society, 2017, 139, 6682-6692.	13.7	120
24	Current Trends in Semiconductor Photoelectrochemistry. ACS Energy Letters, 2017, 2, 1425-1428.	17.4	7
25	Electrodeposition of Cobalt Selenide Thin Films: An Electrochemical Quartz Crystal Microgravimetry Study. Journal of the Electrochemical Society, 2017, 164, D861-D866.	2.9	16
26	Flavin Derivatives with Tailored Redox Properties: Synthesis, Characterization, and Electrochemical Behavior. Chemistry - A European Journal, 2016, 22, 9209-9217.	3.3	14
27	Electrodeposition of Inorganic Oxide/Nanocarbon Composites: Opportunities and Challenges. ChemElectroChem, 2016, 3, 181-192.	3.4	21
28	Polyaniline films photoelectrochemically reduce CO ₂ to alcohols. Chemical Communications, 2016, 52, 8858-8861.	4.1	53
29	Time―and Energyâ€Efficient Solution Combustion Synthesis of Binary Metal Tungstate Nanoparticles with Enhanced Photocatalytic Activity. ChemSusChem, 2015, 8, 1652-1663.	6.8	44
30	Continuous Flow Photoelectrochemical Reactor for Solar Conversion of Carbon Dioxide to Alcohols. Journal of the Electrochemical Society, 2015, 162, E115-E122.	2.9	38
31	Photocatalytic Activity of Inorganic Semiconductor Surfaces: Myths, Hype, and Reality. Journal of Physical Chemistry Letters, 2015, 6, 139-147.	4.6	97
32	On the electrochemical synthesis and charge storage properties of WO3/polyaniline hybrid nanostructures. Journal of Solid State Electrochemistry, 2015, 19, 2741-2751.	2.5	28
33	Photoelectrochemical reduction of CO2 on Cu/Cu2O films: Product distribution and pH effects. Chemical Engineering Journal, 2015, 264, 302-309.	12.7	114
34	Photoelectrochemical Infiltration of a Conducting Polymer (PEDOT) into Metal-Chalcogenide Decorated TiO2 Nanotube Arrays. Electrochimica Acta, 2015, 151, 467-476.	5.2	20
35	Preparation of Au-Bi ₂ O ₃ Nanocomposite by Anodic Electrodeposition Combined with Galvanic Replacement. Journal of the Electrochemical Society, 2014, 161, D499-D503.	2.9	16
36	Mechanistic Aspects of Photoelectrochemical Polymerization of Polypyrrole on a TiO2 Nanotube Array. Electrochimica Acta, 2014, 122, 303-309.	5.2	22

#	Article	IF	CITATIONS
37	Synthesis of Au-BiVO4Nanocomposite through Anodic Electrodeposition Followed by Galvanic Replacement and Its Application to the Photocatalytic Decomposition of Methyl Orange. ChemPhysChem, 2014, 15, 2052-2057.	2.1	10
38	Photoelectrochemistry, Fundamentals and Applications. , 2014, , 1550-1556.		2
39	Photocatalytically Prepared Metal Nanocluster–Oxide Semiconductor–Carbon Nanocomposite Electrodes for Driving Multielectron Transfer. Journal of Physical Chemistry Letters, 2013, 4, 3468-3478.	4.6	18
40	Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO–Cu2O semiconductor nanorod arrays. Chemical Communications, 2013, 49, 1297.	4.1	230
41	On the Substantially Improved Photoelectrochemical Properties of Nanoporous WO3 Through Surface Decoration with RuO2. Electrocatalysis, 2013, 4, 382-389.	3.0	21
42	Tailoring Copper Oxide Semiconductor Nanorod Arrays for Photoelectrochemical Reduction of Carbon Dioxide to Methanol. ChemPhysChem, 2013, 14, 2251-2259.	2.1	119
43	Electrodeposition of Cu2Se Semiconductor Thin Film on Se-Modified Polycrystalline Au Electrode. Journal of Electrochemical Science and Technology, 2013, 4, 140-145.	2.2	8
44	Electrodeposition of Cu2Se Semiconductor Thin Film on Se-Modified Polycrystalline Au Electrode. Journal of Electrochemical Science and Technology, 2013, 4, 140-145.	2.2	4
45	New-Generation Oxide Semiconductors for Solar Energy Conversion and Environmental Remediation. Journal of Nano Research, 2012, 17, 185-191.	0.8	2
46	Photocatalytically Generated Trimetallic (Pt-Pd-Au/C-TiO ₂) Nanocomposite Electrocatalyst. Journal of the Electrochemical Society, 2012, 159, F226-F233.	2.9	13
47	Chemical Pre-Treatment of Coal and Carbon Black: Implications for Electrolytic Hydrogen Generation and Electrochemical/Thermal Reactivity. Journal of the Electrochemical Society, 2012, 159, B695-B701.	2.9	1
48	Electrocatalytic Reduction of Carbon Dioxide Using Ptâ^•C-TiO2 Nanocomposite Cathode. Electrochemical and Solid-State Letters, 2012, 15, B5.	2.2	29
49	Bioinspired photocatalyst assemblies for environmental remediation. Electrochimica Acta, 2012, 84, 96-102.	5.2	10
50	CdSe/ZnO Composite via Galvanic Displacement Followed by Photocathodic Deposition: Hybrid Electrosynthesis and Characterization. Journal of Physical Chemistry C, 2012, 116, 20146-20153.	3.1	13
51	Electrodeposited Polyaniline in a Nanoporous WO ₃ Matrix: An Organic/Inorganic Hybrid Exhibiting Both p- and n-Type Photoelectrochemical Activity. Journal of Physical Chemistry C, 2012, 116, 4234-4242.	3.1	68
52	Bringing Conjugated Polymers and Oxide Nanoarchitectures into Intimate Contact: Light-Induced Electrodeposition of Polypyrrole and Polyaniline on Nanoporous WO ₃ or TiO ₂ Nanotube Array. Journal of Physical Chemistry C, 2012, 116, 19145-19155.	3.1	92
53	Photocatalytic Generation of Syngas Using Combustionâ€Synthesized Silver Bismuth Tungstate. ChemPhysChem, 2012, 13, 2945-2955.	2.1	30
54	Tailoring Interfaces for Electrochemical Synthesis of Semiconductor Films: BiVO ₄ , Bi ₂ O ₃ , or Composites. Journal of Physical Chemistry C, 2011, 115, 7793-7800.	3.1	78

#	Article	IF	CITATIONS
55	Solar Energy Conversion and Environmental Remediation Using Inorganic Semiconductor–Liquid Interfaces: The Road Traveled and the Way Forward. Journal of Physical Chemistry Letters, 2011, 2, 1301-1309.	4.6	75
56	Anodic Growth of Titania Nanotube Array on Titanium Substrate: A Study by Electrochemical Impedance Spectroscopy. Journal of the Electrochemical Society, 2011, 158, D84.	2.9	15
57	Photoelectrolysis of Aqueous Lignite and Carbon Black Slurry Suspensions. Electrochemical and Solid-State Letters, 2011, 14, E31.	2.2	1
58	Electrodeposition and stripping analysis of bismuth selenide thin films using combined electrochemical quartz crystal microgravimetry and stripping voltammetry. Journal of Electroanalytical Chemistry, 2010, 638, 195-203.	3.8	24
59	Cathodic Electrosynthesis of Niobium Oxide One-Dimensional Nanostructures with Tailored Dimensions. Electrochemical and Solid-State Letters, 2010, 13, B69.	2.2	12
60	Photocatalytically Generated Bimetallic (Pt–Auâ^•C–TiO[sub 2]) Electrocatalysts for Polymer Electrolyte Fuel Cell Applications. Journal of the Electrochemical Society, 2010, 157, B147.	2.9	15
61	Electrochemical Grafting of Poly(3,4-ethylenedioxythiophene) into a Titanium Dioxide Nanotube Host Network. Langmuir, 2010, 26, 13697-13702.	3.5	31
62	Electrosynthesis of Bismuth Vanadate Photoelectrodes. Electrochemical and Solid-State Letters, 2010, 13, D29.	2.2	36
63	Bisphenol A removal from wastewater using self-organized TIO2 nanotubular array electrodes. Chemosphere, 2010, 78, 569-575.	8.2	108
64	Platinum-carbon black-titanium dioxide nanocomposite electrocatalysts for fuel cell applications. Journal of Chemical Sciences, 2009, 121, 655-664.	1.5	21
65	Comparison of oxidation efficiency of disperse dyes by chemical and photoelectrocatalytic chlorination and removal of mutagenic activity. Electrochimica Acta, 2009, 54, 2086-2093.	5.2	104
66	Photoelectrochemical Behavior of Polychelate Porphyrin Chromophores and Titanium Dioxide Nanotube Arrays for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 2996-3006.	3.1	53
67	Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation. Chemical Society Reviews, 2009, 38, 1984.	38.1	202
68	Anodic growth of nanoporous WO3 films: Morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion. Journal of Electroanalytical Chemistry, 2008, 612, 112-120.	3.8	126
69	Formation and Characterization of Self-Organized TiO ₂ Nanotube Arrays by Pulse Anodization. Journal of the American Chemical Society, 2008, 130, 965-974.	13.7	106
70	Combustion Synthesis and Characterization of Nanocrystalline WO ₃ . Journal of the American Chemical Society, 2008, 130, 6318-6319.	13.7	242
71	Photocatalytically Generated Ptâ^•C–TiO[sub 2] Electrocatalysts with Enhanced Catalyst Dispersion for Improved Membrane Durability in Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2008, 155, B1102.	2.9	42
72	Compositional Analysis of Electrodeposited Bismuth Telluride Thermoelectric Thin Films Using Combined Electrochemical Quartz Crystal Microgravimetryâ^'Stripping Voltammetry. Analytical Chemistry, 2008, 80, 6724-6730.	6.5	16

#	Article	IF	CITATIONS
73	Photoinduced cathodic deposition of CdTe nanoparticles on polycrystalline gold substrate. Electrochemistry Communications, 2007, 9, 1293-1297.	4.7	14
74	Titania nanotubes from pulse anodization of titanium foils. Electrochemistry Communications, 2007, 9, 2145-2149.	4.7	46
75	Hydrogen generation at irradiated oxide semiconductor–solution interfaces. Journal of Applied Electrochemistry, 2007, 37, 765-787.	2.9	240
76	Photocatalytic production of hydrogen from electrodeposited p-Cu2Op-Cu2O film and sacrificial electron donors. International Journal of Hydrogen Energy, 2007, 32, 4661-4669.	7.1	81
77	Cathodic Electrodeposition of CdO Thin Films from Oxygenated Aqueous Solutions. Electrochemical and Solid-State Letters, 2006, 9, C1.	2.2	22
78	Composite WO3–TiO2 films: Pulsed electrodeposition from a mixed bath versus sequential deposition from twin baths. Electrochemistry Communications, 2006, 8, 539-543.	4.7	28
79	Electrochemical impedance spectroscopy and UV–vis reflectance spectroelectrochemistry of cobalt hexacyanoferrate films. Journal of Electroanalytical Chemistry, 2006, 587, 42-55.	3.8	29
80	Electrosynthesis of cadmium sulfide on sulfur- or thiol-modified polycrystalline gold electrodes. Journal of Electroanalytical Chemistry, 2005, 574, 367-373.	3.8	19
81	Influence of pH on the Photochemical and Electrochemical Reduction of the Dinuclear Ruthenium Complex, [(phen)2Ru(tatpp)Ru(phen)2]Cl4, in Water: Proton-Coupled Sequential and Concerted Multi-Electron Reduction. Chemistry - A European Journal, 2005, 11, 4327-4339.	3.3	49
82	Selenium-Modified Titanium Dioxide Photochemical Diode/Electrolyte Junctions:  Photocatalytic and Electrochemical Preparation, Characterization, and Model Simulations. Journal of Physical Chemistry B, 2005, 109, 11953-11960.	2.6	40
83	Photoassisted Deposition of Chalcogenide Semiconductors on the Titanium Dioxide Surface: Mechanistic and Other Aspects. Chemistry of Materials, 2004, 16, 3846-3852.	6.7	67
84	Composite WO3–TiO2 films prepared by pulsed electrodeposition: morphological aspects and electrochromic behavior. Journal of Electroanalytical Chemistry, 2004, 566, 249-256.	3.8	47
85	Free Radical-Mediated Heterogeneous Photocatalytic Reduction of Metal Ions in UV-Irradiated Titanium Dioxide Suspensions. Journal of Physical Chemistry B, 2004, 108, 4784-4788.	2.6	26
86	Multielectron Photoreduction of a Bridged Ruthenium Dimer, [(phen)2Ru(tatpp)Ru(phen)2][PF6]4: Aqueous Reactivity and Chemical and Spectroelectrochemical Identification of the Photoproducts. Journal of the American Chemical Society, 2004, 126, 11621-11629.	13.7	82
87	Metal Hexacyanoferrates: Electrosynthesis, in situ Characterization and Applications. ChemInform, 2003, 34, no.	0.0	1
88	Spectroelectrochemistry of palladium hexacyanoferrate films on platinum substrates. Journal of Electroanalytical Chemistry, 2003, 544, 101-106.	3.8	23
89	Tungsten trioxide–titanium dioxide composite films prepared by occlusion electrosynthesis in a nickel matrix. Journal of Electroanalytical Chemistry, 2003, 553, 77-85.	3.8	12
90	Metal Hexacyanoferrates:  Electrosynthesis, in Situ Characterization, and Applications. Chemistry of Materials, 2003, 15, 3046-3062.	6.7	412

#	Article	IF	CITATIONS
91	Cobalt Hexacyanoferrate:  Compound Stoichiometry, Infrared Spectroelectrochemistry, and Photoinduced Electron Transfer. Journal of Physical Chemistry B, 2002, 106, 3612-3621.	2.6	131
92	Dinuclear Ruthenium(II) Polypyridyl Complexes Containing Large, Redox-Active, Aromatic Bridging Ligands:  Synthesis, Characterization, and Intramolecular Quenching of MLCT Excited States. Inorganic Chemistry, 2002, 41, 2471-2476.	4.0	140
93	Chronopotentiometry of Titania Film Electrodes in Aqueous Media. Journal of Physical Chemistry B, 2002, 106, 11531-11538.	2.6	9
94	Ruthenium Photocatalysts Capable of Reversibly Storing up to Four Electrons in a Single Acceptor Ligand: A Step Closer to Artificial Photosynthesis. Angewandte Chemie, 2002, 114, 3317-3319.	2.0	45
95	Ruthenium Photocatalysts Capable of Reversibly Storing up to Four Electrons in a Single Acceptor Ligand: A Step Closer to Artificial Photosynthesis. Angewandte Chemie - International Edition, 2002, 41, 3185-3187.	13.8	156
96	Immobilizing semiconductor particles by occlusion electrosynthesis in an oxide film matrix: the titania model case. Electrochemistry Communications, 2002, 4, 871-876.	4.7	15
97	Semiconductor nanostructures in an alumina template matrix: micro- versus macro-scale photoelectrochemical behavior. Electrochimica Acta, 2002, 47, 2603-2613.	5.2	19
98	Cathodic photoprocesses on titania films and in aqueous suspensions. Journal of Electroanalytical Chemistry, 2002, 538-539, 173-182.	3.8	29
99	Semiconductor-Based Composite Materials:  Preparation, Properties, and Performance. Chemistry of Materials, 2001, 13, 2765-2782.	6.7	482
100	Adsorbed Thallium(I) Ions as a Probe of Surface Charge in UV-Irradiated Titania/Aqueous Solution Interfaces. Langmuir, 2001, 17, 3792-3794.	3.5	5
101	Synergistic photocatalysis mediated by TiO2: mutual rate enhancement in the photoreduction of Cr(VI) and Cu(II) in aqueous media. Electrochemistry Communications, 2001, 3, 290-292.	4.7	33
102	Photoelectrochemistry of indium hexacyanoferrate–titania composite films. Journal of Electroanalytical Chemistry, 2001, 500, 270-278.	3.8	13
103	Titania-based heterogeneous photocatalysis. Materials, mechanistic issues, and implications for environmental remediation. Pure and Applied Chemistry, 2001, 73, 1849-1860.	1.9	93
104	Preparation, photoelectrochemical characterization, and photoelectrochromic behavior of metal hexacyanoferrate–titanium dioxide composite films. Electrochimica Acta, 2000, 45, 3403-3411.	5.2	40
105	Photocatalytic reactivity of zinc and cadmium ions in UV-irradiated titania suspensions. Journal of Electroanalytical Chemistry, 2000, 494, 79-86.	3.8	45
106	Heterogeneous Photocatalytic Reduction of Cr(VI) in UV-Irradiated Titania Suspensions:Â Effect of Protons, Ammonium Ions, and Other Interfacial Aspects. Langmuir, 2000, 16, 2715-2721.	3.5	145
107	Surface Morphology/Composition and Photoelectrochemical Behavior of Metalâ^Semiconductor Composite Films. Langmuir, 2000, 16, 5665-5672.	3.5	51
108	Photoelectrochemical Oxidation of Aqueous Sulfite on Niâ^'TiO2Composite Film Electrodes. Langmuir, 2000, 16, 8426-8431.	3.5	22

#	Article	IF	CITATIONS
109	Underpotential Photocatalytic Deposition:Â A New Preparative Route to Composite Semiconductors. Chemistry of Materials, 2000, 12, 3538-3540.	6.7	34
110	Electrosynthesis of cadmium selenide films on a selenium-modified gold surface. Electrochemistry Communications, 1999, 1, 42-45.	4.7	30
111	Application of Combined Flow Injection–Electrochemical Quartz Crystal Microgravimetry to On-line Electrodeposition and Compositional Analysis of CdSe Thin Films. Microchemical Journal, 1999, 62, 15-25.	4.5	11
112	Electrosynthesis of indium sulfide on sulfur-modified polycrystalline gold electrodes. Journal of Electroanalytical Chemistry, 1998, 444, 7-10.	3.8	24
113	Anodic electrosynthesis of Cu2S and CuInS2 films. Journal of Electroanalytical Chemistry, 1998, 453, 187-195.	3.8	24
114	Compositional analysis of organic–inorganic semiconductor composites. Analyst, The, 1998, 123, 113-116.	3.5	20
115	Photoelectrochromism in Chemically Modified Nickelâ^'Titanium Dioxide Nanocomposite Films. Chemistry of Materials, 1998, 10, 25-26.	6.7	14
116	Photoelectrochemical Oxidation of Formate lons on Nickelâ^'Titanium Dioxide Nanocomposite Electrodes: Unusually High "Current Doubling―Yields and Manifestation of a Site Proximity Effect. Langmuir, 1998, 14, 2933-2935.	3.5	32
117	Film Chemistry Control and Electrochemical Properties of Pulsed Plasma Polymerized Ferrocene and Vinylferrocene. Langmuir, 1997, 13, 5941-5950.	3.5	38
118	Photocatalytic Removal of Nickel from Aqueous Solutions Using Ultravioletâ€Irradiated TiO2. Journal of the Electrochemical Society, 1997, 144, 2751-2756.	2.9	44
119	Chemically Modified Ni/TiO2 Nanocomposite Films:  Charge Transfer from Photoexcited TiO2 Particles to Hexacyanoferrate Redox Centers within the Film and Unusual Photoelectrochemical Behavior. Journal of Physical Chemistry B, 1997, 101, 10151-10154.	2.6	46
120	Electrodeposition and characterization of nanocrystalline semiconductor films. Studies in Surface Science and Catalysis, 1997, , 321-351.	1.5	6
121	Electrocatalytic reduction of Cr(VI) by polypyrrole-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 1997, 425, 183-189.	3.8	37
122	Pulsed Plasma Polymerization of Tetramethyltin:Â Nanoscale Compositional Control of Film Chemistry. Chemistry of Materials, 1996, 8, 1067-1077.	6.7	63
123	Study of Copper Sulfide Film Formation by Voltammetry Combined with Electrochemical Quartz Crystal Microgravimetry/Coulometry and Optical Spectroscopy. The Journal of Physical Chemistry, 1996, 100, 18234-18239.	2.9	41
124	Composites of polypyrrole and carbon black: Part III. Chemical synthesis and characterization. Journal of Materials Research, 1995, 10, 1811-1822.	2.6	39
125	Laboratory Experiments on Electrochemical Remediation of the Environment: Electrocoagulation of Oily Wastewater. Journal of Chemical Education, 1995, 72, 1050.	2.3	42
126	Bactericidal Activity of TiO2 Photocatalyst in Aqueous Media: Toward a Solar-Assisted Water Disinfection System. Environmental Science & Technology, 1994, 28, 934-938.	10.0	481

#	Article	IF	CITATIONS
127	Photoelectrochemistry and Raman spectroelectrochemistry of cuprous thiocyanate films on copper electrodes in acidic media. Journal of Electroanalytical Chemistry, 1993, 345, 135-146.	3.8	31
128	Reduction of Hexavalent Chromium in Aqueous Solutions by Polypyrrole. Journal of the Electrochemical Society, 1993, 140, L60-L62.	2.9	81
129	Photocatalytic Reduction and Immobilization of Hexavalent Chromium at Titanium Dioxide in Aqueous Basic Media. Journal of the Electrochemical Society, 1993, 140, 2477-2482.	2.9	130
130	In Situ Characterization of Lead Corrosion Layers by Combined Voltammetry, Coulometry, and Electrochemical Quartz Crystal Microgravimetry. Journal of the Electrochemical Society, 1993, 140, L128-L130.	2.9	7
131	Potential-modulated ultraviolet–visible and Raman spectra of polypyrrole thin films in aqueous electrolytes : combination with voltammetric scanning and the influence of dioxygen on the stability of radical cations and dications of the conducting polymer. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 605-610.	1.7	27
132	Light in an electrochemical tunnel? Solving analytical problems in electrochemistry via spectroscopy. Analytical Chemistry, 1992, 64, 429A-441A.	6.5	30
133	Electrosynthesized thin films of group II-VI compound semiconductors, alloys and superstructures. Advanced Materials, 1992, 4, 23-29.	21.0	168
134	Anodic Electrosynthesis of Cadmium Selenide Thin Films : Characterization and Comparison with the Passive/Transpassive Behavior of the Counterparts. Journal of the Electrochemical Society, 1991, 138, 100-108.	2.9	50
135	Dynamics and topochemistry of the thermal formation of cadmium telluride from the constituent elements: a differential scanning calorimetry study. The Journal of Physical Chemistry, 1991, 95, 3975-3979.	2.9	4
136	In situ photogeneration of a catalyst on a chemically modified electrode surface: application to a mixed-valent hexacyanoferrate system. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 295, 403-407.	0.1	1
137	A Voltammetric Study of Compound Formation in the Hgâ€Cdâ€Te System. Journal of the Electrochemical Society, 1990, 137, 1100-1106.	2.9	20
138	Thermal analyses of compound semiconductors using differential scanning calorimetry. Application to compositional analyses of cathodically electrosynthesized cadmium telluride. Analytical Chemistry, 1990, 62, 821-825.	6.5	16
139	Charge storage and transport in thermal ruthenium oxide thin films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 263, 383-397.	0.1	23
140	Anodic electrosynthesis of cadmium telluride (CdTe) thin films. Chemistry of Materials, 1989, 1, 619-625.	6.7	21
141	Thermolytic Formation of Noble Metals and Their Oxides from Chloride Precursors: A Thermal Analysis Study. Journal of the Electrochemical Society, 1987, 134, 1830-1835.	2.9	45
142	Calorimetric Response of Fossil Fuel Systems: Prospects and Problems. , 1984, , 113-131.		2
143	Thermophysical characterization of oil sands. 4. Thermal analyses. Thermochimica Acta, 1982, 58, 325-331.	2.7	15
144	The kinetics of the thermal decomposition of green river oil shale kerogen by non-isothermal thermogravimetry. Thermochimica Acta, 1981, 45, 253-263.	2.7	84

#	Article	IF	CITATIONS
145	CHAPTER 11. Electro- and Photocatalytic Reduction of CO2: The Homogeneous and Heterogeneous Worlds Collide?. RSC Energy and Environment Series, 0, , 289-332.	0.5	5