Michael Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12076305/publications.pdf

Version: 2024-02-01

		1478505	1199594	
50	975	6	12	
papers	citations	h-index	g-index	
53	53	53	2445	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	MEDB-88. BAF60C/SMARCD3-mediated novel neurodevelopmental epigenomic program promotes metastatic dissemination in medulloblastoma. Neuro-Oncology, 2022, 24, i127-i127.	1.2	0
2	PATH-03. Clinically Tractable Outcome Prediction of Group 3/4 Medulloblastoma Based on TPD52 Immunohistochemistry: a Multicohort Study. Neuro-Oncology, 2022, 24, i158-i158.	1.2	0
3	MEDB-39. Oncogenic mechanisms underlying GLI2-amplified medulloblastoma. Neuro-Oncology, 2022, 24, i114-i114.	1.2	0
4	ETMM-08 METABOLIC REGULATION OF THE EPIGENOME DRIVES LETHAL INFANTILE EPENDYMOMA. Neuro-Oncology Advances, 2021, 3, i15-i16.	0.7	0
5	TMOD-06. LOSS OF DICER COOPERATES WITH TUMOR SUPPRESSORS TO INITIATE METASTATIC MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, i36-i37.	1.2	0
6	EPCO-22. INHERITED POLYMORPHISM IN CHROMOSOME 8Q24 COOPERATES WITH MUTANT IDH1, Trp53 AND ATRX LOSS TO INDUCE LOW-GRADE GLIOMA. Neuro-Oncology, 2021, 23, vi6-vi6.	1.2	0
7	TMOD-18. DIRECT IN VIVO CRISPR SCREEN IDENTIFIES COOPERATING TUMOR SUPPRESSORS THAT DRIVE PROGRESSION OF IDH1-MUTANT LOW-GRADE GLIOMA TO AGGRESSIVE GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi219-vi219.	1.2	0
8	ETMR-22. TITLE: DEFINING THE CLINICAL AND PROGNOSTIC LANDSCAPE OF EMBRYONAL TUMORS WITH MULTI-LAYERED ROSETTES (ETMRs), A RARE BRAIN TUMOR REGISTRY (RBTC) STUDY. Neuro-Oncology, 2020, 22, iii327-iii328.	1.2	0
9	The effect of mTOR inhibition on obstructive hydrocephalus in patients with tuberous sclerosis complex (TSC) related subependymal giant cell astrocytoma (SEGA). Journal of Neuro-Oncology, 2020, 147, 731-736.	2.9	8
10	IMMU-18. FAVORABLE OUTCOME IN REPLICATION REPAIR DEFICIENT HYPERMUTANT BRAIN TUMORS TO IMMUNE CHECKPOINT INHIBITION: AN INTERNATIONAL RRD CONSORTIUM REGISTRY STUDY. Neuro-Oncology, 2020, 22, iii363-iii363.	1.2	1
11	QOL-01. LONGITUDINAL COMPARISON OF NEUROCOGNITIVE TRAJECTORIES IN PEDIATRIC MEDULLOBLASTOMA PATIENTS TREATED WITH PROTON VERSUS PHOTON RADIOTHERAPY. Neuro-Oncology, 2020, 22, iii431-iii431.	1.2	0
12	IMG-13. MRI-BASED RADIOMICS PROGNOSTIC MARKERS OF POSTERIOR FOSSA EPENDYMOMA. Neuro-Oncology, 2020, 22, iii357-iii357.	1.2	0
13	IMG-22. A DEEP LEARNING MODEL FOR AUTOMATIC POSTERIOR FOSSA PEDIATRIC BRAIN TUMOR SEGMENTATION: A MULTI-INSTITUTIONAL STUDY. Neuro-Oncology, 2020, 22, iii359-iii359.	1.2	0
14	RARE-09. PRESERVATION OF ENDOCRINE FUNCTION AFTER OMMAYA RESERVOIR INSERTION IN CHILDREN WITH CYSTIC CRANIOPHARYNGIOMA. Neuro-Oncology, 2020, 22, iii443-iii443.	1.2	0
15	IMMU-05. COMBINATIONAL CAR T-CELL AND EPIGENETIC MODIFIER THERAPY TO TARGET POSTERIOR FOSSA TUMORS. Neuro-Oncology, 2019, 21, ii93-ii94.	1.2	1
16	MEDU-39. HIGHLY RECURRENT U1 SMALL NUCLEAR RNA HOTSPOT MUTATIONS DRIVE ALTERNATIVE SPLICING IN SONIC HEDGEHOG MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii111-ii111.	1.2	0
17	IMMU-20. IMMUNE AND TUMOR BIOMARKERS OF OUTCOME IN REPLICATION REPAIR DEFICIENT BRAIN TUMORS TREATED WITH IMMUNE CHECKPOINT INHIBITORS: UPDATES FROM THE INTERNATIONAL REPLICATION REPAIR DEFICIENCY CONSORTIUM. Neuro-Oncology, 2019, 21, ii96-ii97.	1.2	0
18	HGG-19. MOLECULAR ANALYSIS UNCOVERS 3 DISTINCT SUBGROUPS AND MULTIPLE TARGETABLE GENE FUSIONS IN INFANT GLIOMAS. Neuro-Oncology, 2019, 21, ii90-ii91.	1.2	0

#	Article	IF	CITATIONS
19	MEDU-26. LATENT SOX9-POSITIVE CELLS RESPONSIBLE FOR MYC-DRIVEN MEDULLOBLASTOMA RECURRENCE. Neuro-Oncology, 2019, 21, ii108-ii109.	1.2	0
20	PDTM-24. PINEOBLASTOMA SEGREGATES INTO MOLECULAR SUBTYPES WITH DISTINCT CLINICOPATHOLOGIC FEATURES: REPORT FROM THE RARE BRAIN TUMOUR CONSORTIUM. Neuro-Oncology, 2019, 21, vi192-vi192.	1.2	0
21	LGG-16. PREDICTORS OF OUTCOME IN BRAF-V600E PEDIATRIC GLIOMAS TREATED WITH BRAF INHIBITORS: A REPORT FROM THE PLGG TASKFORCE. Neuro-Oncology, 2019, 21, ii102-ii102.	1.2	0
22	MEDU-40. MATCHING OF SINGLE CELL TRANSCRIPTOMICS FROM CEREBELLAR DEVELOPMENT IDENTIFIES PUTATIVE SUBGROUP SPECIFIC CELLS OF ORIGIN FOR MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii111-ii112.	1.2	0
23	MEDU-28. ELIMINATING THE ROOT OF MEDULLOBLASTOMA BY TARGETING A VOLTAGE-GATED POTASSIUM CHANNEL. Neuro-Oncology, 2019, 21, ii109-ii109.	1.2	1
24	LGG-10. EPIGENETIC/GENETIC/MORPHOLOGIC ANALYSES REVEAL CLINICAL/PROGNOSTIC INSIGHT OF PEDIATRIC LOW GRADE GLIOMAS. Neuro-Oncology, 2018, 20, i106-i106.	1.2	0
25	EPEN-28. HETEROGENEITY WITHIN THE PFB EPENDYMOMA SUBGROUP. Neuro-Oncology, 2018, 20, i79-i79.	1.2	O
26	EPEN-31. SUBGROUP SPECIFIC LONG-TERM SURVIVAL AND NEUROCOGNITIVE OUTCOMES IN POSTERIOR FOSSA EPENDYMOMA (PFE). Neuro-Oncology, 2018, 20, i79-i79.	1.2	0
27	HGG-17. TUMOR MUTATIONAL BURDEN ANALYSIS OF PEDIATRIC TUMORS PROVIDES A DIAGNOSTIC TOOL FOR GERMLINE REPLICATION REPAIR DEFICIENCY AND PREDICT RESPONSE TO IMMUNE CHECKPOINT INHIBITION. Neuro-Oncology, 2018, 20, i92-i92.	1.2	0
28	MBRS-57. TARGETING METABOLIC ADAPTATION IN MYC/MYCN AMPLIFIED PEDIATRIC MEDULLOBLASTOMA AND NEUROBLASTOMA. Neuro-Oncology, 2018, 20, i140-i140.	1.2	0
29	PDTM-46. POLIOVIRUS RECEPTOR (CD155) EXPRESSION IN PEDIATRIC BRAIN TUMORS MEDIATES ONCOLYSIS OF MEDULLOBLASTOMA AND PLEOMORPHIC XANTHOASTROCYTOMA. Neuro-Oncology, 2018, 20, vi213-vi213.	1.2	0
30	TMOD-35. CAN RARE SOX9-POSITIVE CELLS INCITE MYC-DRIVEN MEDULLOBLASTOMA RECURRENCE?. Neuro-Oncology, 2018, 20, vi276-vi276.	1.2	0
31	GENE-21. A COMMON FETAL DEVELOPMENTAL ORIGIN FOR PFA EPENDYMOMA, PFB EPENDYMOMA, AND CEREBELLAR PILOCYTIC ASTROCYTOMAS?. Neuro-Oncology, 2018, 20, vi107-vi107.	1.2	0
32	DRES-09. IN VIVO FUNCTIONAL GENOMICS IDENTIFIES DRIVERS OF CHEMORESISTANCE IN MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, vi77-vi77.	1.2	0
33	PDTM-45. POSITIVE MODULATION OF NATIVE GABAA RECEPTORS IN MEDULLOBLASTOMA CANCER CELLS WITH BENZODIAZEPINES INDUCES RAPID MITOCHONDRIAL FRAGMENTATION AND TP53-DEPENDENT, CELL CYCLE-INDEPENDENT APOPTOSIS. Neuro-Oncology, 2018, 20, vi213-vi213.	1.2	0
34	PDTM-21. MATCHING OF SINGLE CELL TRANSCRIPTOMICS FROM CEREBELLAR DEVELOPMENT IDENTIFIES PUTATIVE SUBGROUP SPECIFIC CELLS OF ORIGIN FOR MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, vi208-vi208.	1.2	1
35	MBRS-52. TARGETING PRUNE-1 IN A GEMM OF METASTATIC MEDULLOBLASTOMA: A POTENTIAL ROUTE OF INHIBITION FOR NEW FUTURE THERAPIES. Neuro-Oncology, 2018, 20, i139-i139.	1.2	O
36	MBRS-51. SINGLE CELL TRANSCRIPTOMIC ANALYSIS DEFINES DISCRETE SUBPOPULATIONS IN SHH-DRIVEN MEDULLOBLASTOMAS THAT ARE DIFFERENTIALLY AFFECTED BY VISMODEGIB. Neuro-Oncology, 2018, 20, i139-i139.	1.2	0

#	Article	IF	Citations
37	EMBR-17. PINEOBLASTOMA SEGREGATES INTO MOLECULAR SUBTYPES WITH DISTINCT CLINICOPATHOLOGIC FEATURES: REPORT FROM THE RARE BRAIN TUMOR CONSORTIUM. Neuro-Oncology, 2018, 20, i72-i73.	1.2	0
38	The clinical significance of equivocal findings on spinal MRI in children with medulloblastoma. Pediatric Blood and Cancer, 2017, 64, e26472.	1.5	9
39	MEDU-14. OTX2 CONTROLS AN AXON GUIDANCE GENE EXPRESSION NETWORK TO REGULATE MEDULLOBLASTOMA SELF-RENEWAL. Neuro-Oncology, 2017, 19, iv40-iv40.	1.2	0
40	Societal preferences in the treatment of pediatric medulloblastoma: Balancing risk of death and quality of life. Pediatric Blood and Cancer, 2017, 64, e26340.	1.5	4
41	MB-48PEROXIREDOXIN 1 IS A POTENTIAL THERAPEUTIC TARGET IN GROUP-3 MEDULLOBLASTOMAS. Neuro-Oncology, 2016, 18, iii107.4-iii108.	1.2	0
42	MB-100DIVERGENT CLONAL SELECTION DOMINATES MEDULLOBLASTOMA AT RECURRENCE. Neuro-Oncology, 2016, 18, iii119.4-iii119.	1.2	0
43	Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency. Journal of Clinical Oncology, 2016, 34, 2206-2211.	1.6	692
44	Re-irradiation for relapsed paediatric ependymoma Journal of Clinical Oncology, 2016, 34, 10565-10565.	1.6	1
45	Imaging of metastatic medulloblastoma in the molecular era Journal of Clinical Oncology, 2016, 34, e22003-e22003.	1.6	0
46	PM-16 * AN ANIMAL MODEL OF 17p DELETION IN MEDULLOBLASTOMA. Neuro-Oncology, 2015, 17, iii34-iii34.	1.2	0
47	Pediatric awake craniotomy and intra-operative stimulation mapping. Journal of Clinical Neuroscience, 2014, 21, 1891-1894.	1.5	60
48	Hyaluronate receptors mediating glioma cell migration and proliferation. Journal of Neuro-Oncology, 2001, 53, 115-127.	2.9	118
49	Coâ€expression of nestin and vimentin intermediate filaments in invasive human astrocytoma cells. International Journal of Developmental Neuroscience, 1999, 17, 503-515.	1.6	79
50	Abnormalities of Structural Brain Connectivity in Pediatric Brain Tumor Survivors. Neuro-Oncology Advances, 0, , .	0.7	0