List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12076143/publications.pdf Version: 2024-02-01

Υμανίου

1 Spatiotemporal patterns in a diffusive predator3C"prey system with nonlocal intraspectfic prey competition. Studies in Applied Mathematics, 2022, 148, 396-432. 2 Control Strategies for a Multi-strain Epidemic Model. Bulletin of Mathematical Biology, 2022, 84, 10. 3 Directed movement changes coexistence outcomes in heterogeneous environments. Ecology Letters, 2022, 25, 366-377. 4 Classifying the level set of principal eigenvalue for time-periodic parabolic operators and applications. Journal of Functional Analysis, 2022, 282, 109338. 5 A New Monotonicity for Principal Eigenvalues with Applications to Time-Periodic Patch Models. SIAM Journal on Applied Mathematics, 2022, 82, 576-601. 6 Global dynamics of a generalist predator3C"prey model in open advective environments. Journal of Mathematical Biology, 2022, 84, 46. 7 Total biomass of a single population in two-patch environments. Theoretical Population Biology, 2022, 146, 1-14. 8 Maximizing the total population with logistic growth in a patchy environment. Journal of Mathematical Biology, 2021, 82, 25. 9 Asymptotics of the Principal Eigenvalue for a Linear Time-Periodic Parabolic Operator I: Large Advection. SIAM Journal on Mathematical Analysis, 2021, 55, 5243-5277. 10 Evolution of anisotropic diffusion in two-dimensional heterogeneous environments. Journal of Mathematical Biology, 2021, 82, 36. 11 Impact of State-Dependent Dispersal on Disease Prevalence. Journal of Nonlinear Science, 2021, 31, 73.	2.4 1.9 6.4 1.4 1.8 1.9	23 7 6 10 8 17
 Control Strategies for a Multi-strain Epidemic Model. Bulletin of Mathematical Biology, 2022, 84, 10. Directed movement changes coexistence outcomes in heterogeneous environments. Ecology Letters, 2022, 25, 366-377. Classifying the level set of principal eigenvalue for time-periodic parabolic operators and applications. Journal of Functional Analysis, 2022, 282, 109338. A New Monotonicity for Principal Eigenvalues with Applications to Time-Periodic Patch Models. SIAM Journal on Applied Mathematics, 2022, 82, 576-601. Global dynamics of a generalist predatorãe^e prey model in open advective environments. Journal of Mathematical Biology, 2022, 84, 46. Total biomass of a single population in two-patch environments. Theoretical Population Biology, 2022, 146, 1-14. Maximizing the total population with logistic growth in a patchy environment. Journal of Mathematical Biology, 2021, 82, 2. Asymptotics of the Principal Eigenvalue for a Linear Time-Periodic Parabolic Operator 1: Large Advection. SIAM Journal on Mathematical Analysis, 2021, 53, 5243-5277. Evolution of anisotropic diffusion in two-dimensional heterogeneous environments. Journal of Mathematical Biology, 2021, 82, 36. Impact of State-Dependent Dispersal on Disease Prevalence. Journal of Nonlinear Science, 2021, 31, 73. Three-patch Models for the Evolution of Dispersal in Advective Environments: Varying Drift and Network Topology. Bulletin of Mathematical Biology, 2021, 83, 109. Competitive exclusion in a nonlocal reaction&^{ee} advective Invironments: Varying Drift and Populations. Nonlinear Analysis: Real World Applications, 2021, 61, 103350. Ecological and evolutionary dynamics in periodic and advective habitats. Methods and Applications of 	1.9 6.4 1.4 1.8 1.9	7 6 10 8 17
3 Directed movement changes coexistence outcomes in heterogeneous environments. Ecology Letters, 2022, 25, 366-377. 4 Classifying the level set of principal eigenvalue for time-periodic parabolic operators and applications. Journal of Functional Analysis, 2022, 282, 109338. 5 A New Monotonicity for Principal Eigenvalues with Applications to Time-Periodic Patch Models. SIAM Journal on Applied Mathematics, 2022, 82, 576-601. 6 Clobal dynamics of a generalist predatori4€"prey model in open advective environments. Journal of Mathematical Biology, 2022, 84, 46. 7 Total blomass of a single population in two-patch environments. Theoretical Population Biology, 2022, 146, 1-14. 8 Maximizing the total population with logistic growth in a patchy environment. Journal of Mathematical Biology, 2021, 82, 2. 9 Asymptotics of the Principal Eigenvalue for a Linear Time-Periodic Parabolic Operator I: Large Advection. SIAM Journal on Mathematical Analysis, 2021, 53, 5243-5277. 10 Evolution of anisotropic diffusion in two-dimensional heterogeneous environments. Journal of Mathematical Biology, 2021, 82, 36. 11 Impact of State-Dependent Dispersal on Disease Prevalence. Journal of Nonlinear Science, 2021, 31, 73. 12 Three-patch Models for the Evolution of Dispersal in Advective Environments: Varying Drift and Network Topology. Bulletin of Mathematical Biology, 2021, 83, 109. 13 Competitive exclusion in a nonlocal reactionäC* diffusionäC* advection model of phytoplankton populations. Nonlinear Analysis: Real	6.4 1.4 1.8 1.9 1.1	6 10 8 17
 Classifying the level set of principal eigenvalue for time-periodic parabolic operators and applications. Journal of Functional Analysis, 2022, 282, 109338. A New Monotonicity for Principal Eigenvalues with Applications to Time-Periodic Patch Models. SIAM Journal on Applied Mathematics, 2022, 82, 576-601. Clobal dynamics of a generalist predatorâ€" prey model in open advective environments. Journal of Mathematical Biology, 2022, 84, 46. Total biomass of a single population in two-patch environments. Theoretical Population Biology, 2022, 146, 1-14. Maximizing the total population with logistic growth in a patchy environment. Journal of Mathematical Biology, 2021, 82, 2. Asymptotics of the Principal Eigenvalue for a Linear Time-Periodic Parabolic Operator I: Large Advection. SIAM Journal on Mathematical Analysis, 2021, 53, 5243-5277. Evolution of anisotropic diffusion in two-dimensional heterogeneous environments. Journal of Mathematical Biology, 2021, 82, 36. Impact of State-Dependent Dispersal on Disease Prevalence. Journal of Nonlinear Science, 2021, 31, 73. Three-patch Models for the Evolution of Dispersal in Advective Environments: Varying Drift and Network Topology. Bulletin of Mathematical Biology, 2021, 83, 109. Competitive exclusion in a nonlocal reactionâ€" diffusiona€" advection model of phytoplankton populations. Nonlinear Analysis: Real World Applications, 2021, 61, 103350. 	1.4 1.8 1.9 1.1	10 8 17 6
5 A New Monotonicity for Principal Eigenvalues with Applications to Time-Periodic Patch Models. SIAM Journal on Applied Mathematics, 2022, 82, 576-601. 6 Clobal dynamics of a generalist predatorâ€" prey model in open advective environments. Journal of Mathematical Biology, 2022, 84, 46. 7 Total biomass of a single population in two-patch environments. Theoretical Population Biology, 2022, 146, 1-14. 8 Maximizing the total population with logistic growth in a patchy environment. Journal of Mathematical Biology, 2021, 82, 2. 9 Asymptotics of the Principal Eigenvalue for a Linear Time-Periodic Parabolic Operator I: Large Advection. SIAM Journal on Mathematical Analysis, 2021, 53, 5243-5277. 10 Evolution of anisotropic diffusion in two-dimensional heterogeneous environments. Journal of Mathematical Biology, 2021, 82, 36. 11 Impact of State-Dependent Dispersal on Disease Prevalence. Journal of Nonlinear Science, 2021, 31, 73. 12 Three-patch Models for the Evolution of Dispersal in Advective Environments: Varying Drift and Network Topology. Bulletin of Mathematical Biology, 2021, 83, 109. 13 Competitive exclusion in a nonlocal reactionâ€" diffusionâ€" advection model of phytoplankton populations. Nonlinear Analysis: Real World Applications, 2021, 61, 103350. 14 Ecological and evolutionary dynamics in periodic and advective habitats. Methods and Applications of	1.8 1.9 1.1	8 17
 Global dynamics of a generalist predatorà€" prey model in open advective environments. Journal of Mathematical Biology, 2022, 84, 46. Total biomass of a single population in two-patch environments. Theoretical Population Biology, 2022, 146, 1-14. Maximizing the total population with logistic growth in a patchy environment. Journal of Mathematical Biology, 2021, 82, 2. Asymptotics of the Principal Eigenvalue for a Linear Time-Periodic Parabolic Operator I: Large Advection. SIAM Journal on Mathematical Analysis, 2021, 53, 5243-5277. Evolution of anisotropic diffusion in two-dimensional heterogeneous environments. Journal of Mathematical Biology, 2021, 82, 36. Impact of State-Dependent Dispersal on Disease Prevalence. Journal of Nonlinear Science, 2021, 31, 73. Three-patch Models for the Evolution of Dispersal in Advective Environments: Varying Drift and Network Topology. Bulletin of Mathematical Biology, 2021, 83, 109. Competitive exclusion in a nonlocal reactionà€"diffusionà€"advection model of phytoplankton populations. Nonlinear Analysis: Real World Applications, 2021, 61, 103350. Ecological and evolutionary dynamics in periodic and advective habitats. Methods and Applications of 	1.9	17
 Total biomass of a single population in two-patch environments. Theoretical Population Biology, 2022, 146, 1-14. Maximizing the total population with logistic growth in a patchy environment. Journal of Mathematical Biology, 2021, 82, 2. Asymptotics of the Principal Eigenvalue for a Linear Time-Periodic Parabolic Operator I: Large Advection. SIAM Journal on Mathematical Analysis, 2021, 53, 5243-5277. Evolution of anisotropic diffusion in two-dimensional heterogeneous environments. Journal of Mathematical Biology, 2021, 82, 36. Impact of State-Dependent Dispersal on Disease Prevalence. Journal of Nonlinear Science, 2021, 31, 73. Three-patch Models for the Evolution of Dispersal in Advective Environments: Varying Drift and Network Topology. Bulletin of Mathematical Biology, 2021, 83, 109. Competitive exclusion in a nonlocal reaction&E^{ee} diffusion&E^{ee} advection model of phytoplankton populations. Nonlinear Analysis: Real World Applications, 2021, 61, 103350. Ecological and evolutionary dynamics in periodic and advective habitats. Methods and Applications of 	1.1	6
 Maximizing the total population with logistic growth in a patchy environment. Journal of Mathematical Biology, 2021, 82, 2. Asymptotics of the Principal Eigenvalue for a Linear Time-Periodic Parabolic Operator I: Large Advection. SIAM Journal on Mathematical Analysis, 2021, 53, 5243-5277. Evolution of anisotropic diffusion in two-dimensional heterogeneous environments. Journal of Mathematical Biology, 2021, 82, 36. Impact of State-Dependent Dispersal on Disease Prevalence. Journal of Nonlinear Science, 2021, 31, 73. Three-patch Models for the Evolution of Dispersal in Advective Environments: Varying Drift and Network Topology. Bulletin of Mathematical Biology, 2021, 83, 109. Competitive exclusion in a nonlocal reactionâ€" diffusionâ€" advection model of phytoplankton populations. Nonlinear Analysis: Real World Applications, 2021, 61, 103350. 		
 Asymptotics of the Principal Eigenvalue for a Linear Time-Periodic Parabolic Operator I: Large Advection. SIAM Journal on Mathematical Analysis, 2021, 53, 5243-5277. Evolution of anisotropic diffusion in two-dimensional heterogeneous environments. Journal of Mathematical Biology, 2021, 82, 36. Impact of State-Dependent Dispersal on Disease Prevalence. Journal of Nonlinear Science, 2021, 31, 73. Three-patch Models for the Evolution of Dispersal in Advective Environments: Varying Drift and Network Topology. Bulletin of Mathematical Biology, 2021, 83, 109. Competitive exclusion in a nonlocal reaction–diffusion–advection model of phytoplankton populations. Nonlinear Analysis: Real World Applications, 2021, 61, 103350. Ecological and evolutionary dynamics in periodic and advective habitats. Methods and Applications of 	1.9	16
 Evolution of anisotropic diffusion in two-dimensional heterogeneous environments. Journal of Mathematical Biology, 2021, 82, 36. Impact of State-Dependent Dispersal on Disease Prevalence. Journal of Nonlinear Science, 2021, 31, 73. Three-patch Models for the Evolution of Dispersal in Advective Environments: Varying Drift and Network Topology. Bulletin of Mathematical Biology, 2021, 83, 109. Competitive exclusion in a nonlocal reaction–diffusion–advection model of phytoplankton populations. Nonlinear Analysis: Real World Applications, 2021, 61, 103350. Ecological and evolutionary dynamics in periodic and advective habitats. Methods and Applications of 	1.9	7
 Impact of State-Dependent Dispersal on Disease Prevalence. Journal of Nonlinear Science, 2021, 31, 73. Three-patch Models for the Evolution of Dispersal in Advective Environments: Varying Drift and Network Topology. Bulletin of Mathematical Biology, 2021, 83, 109. Competitive exclusion in a nonlocal reaction–diffusion–advection model of phytoplankton populations. Nonlinear Analysis: Real World Applications, 2021, 61, 103350. Ecological and evolutionary dynamics in periodic and advective habitats. Methods and Applications of 	1.9	1
 Three-patch Models for the Evolution of Dispersal in Advective Environments: Varying Drift and Network Topology. Bulletin of Mathematical Biology, 2021, 83, 109. Competitive exclusion in a nonlocal reaction–diffusion–advection model of phytoplankton populations. Nonlinear Analysis: Real World Applications, 2021, 61, 103350. Ecological and evolutionary dynamics in periodic and advective habitats. Methods and Applications of 	2.1	12
 Competitive exclusion in a nonlocal reaction–diffusion–advection model of phytoplankton populations. Nonlinear Analysis: Real World Applications, 2021, 61, 103350. Ecological and evolutionary dynamics in periodic and advective habitats. Methods and Applications of 	1.9	14
Ecological and evolutionary dynamics in periodic and advective habitats. Methods and Applications of	1.7	4
Analysis, 2021, 28, 423-452.	0.5	1
Evolution of dispersal in spatial population models with multiple timescales. Journal of Mathematical Biology, 2020, 80, 3-37.	1.9	12
Are Two-Patch Models Sufficient? The Evolution of Dispersal and Topology of River Network Modules. Bulletin of Mathematical Biology, 2020, 82, 131.	1.9	14
¹⁷ Dynamics of a parabolic-ODE competition system in heterogeneous environments. Proceedings of the American Mathematical Society, 2020, 148, 3025-3038.	0.8	4
The generalised principal eigenvalue of time-periodic nonlocal dispersal operators and applications. Journal of Differential Equations, 2020, 269, 4960-4997.		19

#	Article	IF	CITATIONS
19	Global dynamics of a Lotka–Volterra competition–diffusion–advection system in heterogeneous environments. Journal Des Mathematiques Pures Et Appliquees, 2019, 121, 47-82.	1.6	93
20	Concentration phenomena in an integro-PDE model for evolution of conditional dispersal. Indiana University Mathematics Journal, 2019, 68, 881-923.	0.9	4
21	A spatial SEIRS reaction-diffusion model in heterogeneous environment. Journal of Differential Equations, 2019, 267, 5084-5114.	2.2	79
22	Monotonicity and Global Dynamics of a Nonlocal Two-Species Phytoplankton Model. SIAM Journal on Applied Mathematics, 2019, 79, 716-742.	1.8	15
23	Monotonicity of the principal eigenvalue for a linear time-periodic parabolic operator. Proceedings of the American Mathematical Society, 2019, 147, 5291-5302.	0.8	15
24	Dynamics of a consumer–resource reaction–diffusion model. Journal of Mathematical Biology, 2019, 78, 1605-1636.	1.9	21
25	Persistence, Competition, and Evolution. Mathematics of Planet Earth, 2019, , 205-238.	0.1	4
26	Hopf bifurcation in a delayed reaction–diffusion–advection population model. Journal of Differential Equations, 2018, 264, 5333-5359.	2.2	65
27	Coexistence and bistability of a competition model in open advective environments. Mathematical Biosciences, 2018, 306, 10-19.	1.9	31
28	Nonexistence of nonconstant steady-state solutions in a triangular cross-diffusion model. Journal of Differential Equations, 2017, 262, 5160-5178.	2.2	15
29	Dimorphism by Singularity Theory in a Model for River Ecology. Bulletin of Mathematical Biology, 2017, 79, 1051-1069.	1.9	6
30	Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. Journal of Differential Equations, 2017, 263, 2343-2373.	2.2	139
31	Local dynamics of a diffusive predator–prey model in spatially heterogeneous environment. Journal of Fixed Point Theory and Applications, 2017, 19, 755-772.	1.1	31
32	An integro-PDE model for evolution of random dispersal. Journal of Functional Analysis, 2017, 272, 1755-1790.	1.4	14
33	Evolution of natal dispersal in spatially heterogenous environments. Mathematical Biosciences, 2017, 283, 136-144.	1.9	16
34	The Role of Advection in a Two-Species Competition Model: A Bifurcation Approach. Memoirs of the American Mathematical Society, 2017, 245, 0-0.	0.9	20
35	The Emergence of Range Limits in Advective Environments. SIAM Journal on Applied Mathematics, 2016, 76, 641-662.	1.8	34
36	A spatial SIS model in advective heterogeneous environments. Journal of Differential Equations, 2016, 261, 3305-3343.	2.2	143

#	Article	IF	CITATIONS
37	Asymptotic Behavior of the Principal Eigenvalue for Cooperative Elliptic Systems and Applications. Journal of Dynamics and Differential Equations, 2016, 28, 29-48.	1.9	28
38	Multiple steady-states in phytoplankton population induced by photoinhibition. Journal of Differential Equations, 2015, 258, 2408-2434.	2.2	10
39	Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions. Journal of Differential Equations, 2015, 259, 141-171.	2.2	114
40	Global Existence and Uniform Boundedness of Smooth Solutions to a Cross-Diffusion System with Equal Diffusion Rates. Communications in Partial Differential Equations, 2015, 40, 1905-1941.	2.2	35
41	Evolution of dispersal in closed advective environments. Journal of Biological Dynamics, 2015, 9, 188-212.	1.7	75
42	Some reaction diffusion models in spatial ecology. Scientia Sinica Mathematica, 2015, 45, 1619-1634.	0.2	9
43	Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35, 1589-1607.	0.9	37
44	Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems, 2015, 36, 953-969.	0.9	13
45	Competition between two similar species in the unstirred chemostat. Discrete and Continuous Dynamical Systems - Series B, 2015, 21, 621-639.	0.9	3
46	Evolution of conditional dispersal: evolutionarily stable strategies in spatial models. Journal of Mathematical Biology, 2014, 68, 851-877.	1.9	38
47	Approaching the Ideal Free Distribution in Two-Species Competition Models with Fitness-Dependent Dispersal. SIAM Journal on Mathematical Analysis, 2014, 46, 1228-1262.	1.9	25
48	Evolutionarily Stable and Convergent Stable Strategies in Reaction–Diffusion Models for Conditional Dispersal. Bulletin of Mathematical Biology, 2014, 76, 261-291.	1.9	30
49	Evolution of dispersal in open advective environments. Journal of Mathematical Biology, 2014, 69, 1319-1342.	1.9	128
50	Global dynamics of a competition model with non-local dispersal I: The shadow system. Journal of Mathematical Analysis and Applications, 2014, 412, 485-497.	1.0	14
51	Global dynamics for two-species competition in patchy environment. Mathematical Biosciences and Engineering, 2014, 11, 947-970.	1.9	11
52	Random dispersal versus fitness-dependent dispersal. Journal of Differential Equations, 2013, 254, 2905-2941.	2.2	24
53	An integro-PDE model from population genetics. Journal of Differential Equations, 2013, 254, 2367-2392.	2.2	11
54	An introduction to migration-selection PDE models. Discrete and Continuous Dynamical Systems, 2013, 33, 4349-4373.	0.9	34

YUAN LOU

#	Article	IF	CITATIONS
55	On several conjectures from evolution of dispersal. Journal of Biological Dynamics, 2012, 6, 117-130.	1.7	59
56	Evolutionary stability of ideal free dispersal strategies in patchy environments. Journal of Mathematical Biology, 2012, 65, 943-965.	1.9	57
57	Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications. Indiana University Mathematics Journal, 2012, 61, 45-80.	0.9	41
58	Evolutionary Convergence to Ideal Free Dispersal Strategies and Coexistence. Bulletin of Mathematical Biology, 2012, 74, 257-299.	1.9	18
59	Dynamics of a three species competition model. Discrete and Continuous Dynamical Systems, 2012, 32, 3099-3131.	0.9	20
60	Dynamics of a reaction-diffusion-advection model for two competing species. Discrete and Continuous Dynamical Systems, 2012, 32, 3841-3859.	0.9	55
61	Evolution of mixed dispersal in periodic environments. Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 2047-2072.	0.9	37
62	On the dependence of population size upon random dispersal rate. Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 2771-2788.	0.9	25
63	Global Dynamics of a Tritrophic Model for Two Patches with Cost of Dispersal. SIAM Journal on Applied Mathematics, 2011, 71, 1801-1820.	1.8	6
64	Evolutionary ecology of movement by predators and prey. Theoretical Ecology, 2011, 4, 255-267.	1.0	18
65	The Effect of Travel Loss on Evolutionarily Stable Distributions of Populations in Space. American Naturalist, 2011, 178, 15-29.	2.1	13
66	An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity. Discrete and Continuous Dynamical Systems, 2010, 27, 643-655.	0.9	30
67	Reaction–diffusion models with large advection coefficients. Applicable Analysis, 2010, 89, 983-1004.	1.3	26
68	Single Phytoplankton Species Growth with Light and Advection in a Water Column. SIAM Journal on Applied Mathematics, 2010, 70, 2942-2974.	1.8	66
69	Random dispersal vs. non-local dispersal. Discrete and Continuous Dynamical Systems, 2010, 26, 551-596.	0.9	192
70	Evolution of dispersal and the ideal free distribution. Mathematical Biosciences and Engineering, 2010, 7, 17-36.	1.9	105
71	Evolution of cross-diffusion and self-diffusion. Journal of Biological Dynamics, 2009, 3, 410-429.	1.7	16
72	Tracking prey or tracking the prey's resource? Mechanisms of movement and optimal habitat selection by predators. Journal of Theoretical Biology, 2009, 256, 187-200.	1.7	44

#	Article	IF	CITATIONS
73	Evolution of dispersal in heterogeneous landscapes. Chapman & Hall/CRC Mathematical and Computational Biology Series, 2009, , 213-229.	0.1	9
74	Evolution of conditional dispersal: a reaction–diffusion–advection model. Journal of Mathematical Biology, 2008, 57, 361-386.	1.9	105
75	Approximating the ideal free distribution via reaction–diffusion–advection equations. Journal of Differential Equations, 2008, 245, 3687-3703.	2.2	66
76	Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model. Indiana University Mathematics Journal, 2008, 57, 627-658.	0.9	84
77	Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete and Continuous Dynamical Systems, 2008, 21, 1-20.	0.9	338
78	Advection-mediated coexistence of competing species. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2007, 137, 497-518.	1.2	110
79	Evolution under multiallelic migration–selection models. Theoretical Population Biology, 2007, 72, 21-40.	1.1	26
80	Evolution at a multiallelic locus under migration and uniform selection. Journal of Mathematical Biology, 2007, 54, 787-796.	1.9	8
81	Multiallelic selection polymorphism. Theoretical Population Biology, 2006, 69, 217-229.	1.1	9
82	Evolution under the multiallelic Levene model. Theoretical Population Biology, 2006, 70, 401-411.	1.1	13
83	Movement toward better environments and the evolution of rapid diffusion. Mathematical Biosciences, 2006, 204, 199-214.	1.9	115
84	On the effects of migration and spatial heterogeneity on single and multiple species. Journal of Differential Equations, 2006, 223, 400-426.	2.2	204
85	Evolution of a semilinear parabolic system for migration and selection without dominance. Journal of Differential Equations, 2006, 225, 624-665.	2.2	26
86	Loops and branches of coexistence states in a Lotka–Volterra competition model. Journal of Differential Equations, 2006, 230, 720-742.	2.2	36
87	Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Japan Journal of Industrial and Applied Mathematics, 2006, 23, 275-292.	0.9	75
88	Effects of Sog on Dpp-Receptor Binding. SIAM Journal on Applied Mathematics, 2005, 65, 1748-1771.	1.8	25
89	Multiple Reversals of Competitive Dominance in Ecological Reserves via External Habitat Degradation. Journal of Dynamics and Differential Equations, 2004, 16, 973-1010.	1.9	17
90	Evolution of a semilinear parabolic system for migration and selection in population genetics. Journal of Differential Equations, 2004, 204, 292-322.	2.2	23

YUAN LOU

#	Article	IF	CITATIONS
91	Does movement toward better environments always benefit a population?. Journal of Mathematical Analysis and Applications, 2003, 277, 489-503.	1.0	90
92	On a limiting system in the LotkaVolterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 2003, 10, 435-458.	0.9	75
93	A Semilinear Parabolic System for Migration and Selection in Population Genetics. Journal of Differential Equations, 2002, 181, 388-418.	2.2	49
94	Patterns of Multiallelic Polymorphism Maintained by Migration and Selection. Theoretical Population Biology, 2001, 59, 297-313.	1.1	37
95	Qualitative behaviour of positive solutions of a predator—prey model: effects of saturation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2001, 131, 321-349.	1.2	85
96	On diffusion-induced blowups in a mutualistic model. Nonlinear Analysis: Theory, Methods & Applications, 2001, 45, 329-342.	1.1	38
97	Proof of a Conjecture for the Perturbed Gelfand Equation from Combustion Theory. Journal of Differential Equations, 2001, 173, 213-230.	2.2	34
98	On \$3imes 3\$ Lotka-Volterra competition systems with cross-diffusion. Discrete and Continuous Dynamical Systems, 2000, 6, 175-190.	0.9	54
99	Diffusion vs Cross-Diffusion: An Elliptic Approach. Journal of Differential Equations, 1999, 154, 157-190.	2.2	227
100	S-Shaped Global Bifurcation Curve and Hopf Bifurcation of Positive Solutions to a Predator–Prey Model. Journal of Differential Equations, 1998, 144, 390-440.	2.2	80
101	On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 1998, 4, 193-203.	0.9	109
102	Some uniqueness and exact multiplicity results for a predator-prey model. Transactions of the American Mathematical Society, 1997, 349, 2443-2475.	0.9	105
103	Diffusion, Self-Diffusion and Cross-Diffusion. Journal of Differential Equations, 1996, 131, 79-131.	2.2	554
104	Necessary and sufficient condition for the existence of positive solutions of certain cooperative system. Nonlinear Analysis: Theory, Methods & Applications, 1996, 26, 1079-1095.	1.1	54
105	Uniqueness and nonuniqueness of coexistence states in the lotka-volterra competition model. Communications on Pure and Applied Mathematics, 1994, 47, 1571-1594.	3.1	64