Hou Xianjun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12075203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring the lubrication mechanism of CeO2 nanoparticles dispersed in engine oil by bis(2-ethylhexyl) phosphate as a novel antiwear additive. Tribology International, 2022, 165, 107321.	3.0	29
2	Nanolubricant additives. , 2022, , 675-711.		3
3	Role of bis(2-ethylhexyl) phosphate and Al2O3/TiO2 hybrid nanomaterials in improving the dispersion stability of nanolubricants. Tribology International, 2021, 155, 106767.	3.0	18
4	Thermophysical and tribological behaviors of multiwalled carbon nanotubes used as nanolubricant additives. Surface Topography: Metrology and Properties, 2021, 9, 045002.	0.9	5
5	Frictional performance evaluation of sliding surfaces lubricated by zinc - oxide nano-additives. Surface Engineering, 2020, 36, 144-157.	1.1	44
6	Improving the heat transfer capability and thermal stability of vehicle engine oils using Al2O3/TiO2 nanomaterials. Powder Technology, 2020, 363, 48-58.	2.1	66
7	Colloidal stability mechanism of copper nanomaterials modified by bis(2-ethylhexyl) phosphate dispersed in polyalphaolefin oil as green nanolubricants. Journal of Colloid and Interface Science, 2020, 578, 24-36.	5.0	31
8	Tribological characterization of M50 matrix composites reinforced by TiO ₂ /graphene nanomaterials in dry conditions under different speeds and loads. Materials Research Express, 2019, 6, 1165d6.	0.8	13
9	Role of Nanolubricants Formulated in Improving Vehicle Engines Performance. IOP Conference Series: Materials Science and Engineering, 2019, 563, 022015.	0.3	11
10	Techniques used to improve the tribological performance of the piston ring-cylinder liner contact. IOP Conference Series: Materials Science and Engineering, 2019, 563, 022024.	0.3	2
11	M50 Matrix Sintered with Nanoscale Solid Lubricants Shows Enhanced Self-lubricating Properties Under Dry Sliding at Different Temperatures. Tribology Letters, 2019, 67, 1.	1.2	34
12	Role of the friction layer formed on the brake lining surface in friction stabilization for automotive brakes. Surface Topography: Metrology and Properties, 2019, 7, 015026.	0.9	8
13	Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines. Tribology International, 2018, 124, 209-229.	3.0	142
14	Friction and Wear Reduction Mechanisms of the Reciprocating Contact Interfaces Using Nanolubricant Under Different Loads and Speeds. Journal of Tribology, 2018, 140, .	1.0	32
15	Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives. Applied Energy, 2018, 211, 461-478.	5.1	126
16	Mini Review on the Significance Nano-Lubricants in Boundary Lubrication Regime. International Journal of Biosensors & Bioelectronics, 2017, 2, .	0.2	3
17	Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	59
18	Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribology International, 2016, 103, 540-554.	3.0	287

Hou Xianjun

#	Article	IF	CITATIONS
19	Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives. Wear, 2016, 364-365, 270-281.	1.5	124
20	Enhancing the thermophysical properties and tribological behaviour of engine oils using nano-lubricant additives. RSC Advances, 2016, 6, 77913-77924.	1.7	91
21	An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2016, 230, 329-349.	0.5	27
22	Improving the tribological behavior of internal combustion engines via the addition of nanoparticles to engine oils. Nanotechnology Reviews, 2015, 4, .	2.6	82