Veronika Magdanz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1207492/publications.pdf Version: 2024-02-01

VERONIKA MACDANZ

#	Article	IF	CITATIONS
1	Self-Propelled Micromotors for Cleaning Polluted Water. ACS Nano, 2013, 7, 9611-9620.	14.6	489
2	Development of a Spermâ€Flagella Driven Microâ€Bioâ€Robot. Advanced Materials, 2013, 25, 6581-6588.	21.0	356
3	Sperm-Hybrid Micromotor for Targeted Drug Delivery. ACS Nano, 2018, 12, 327-337.	14.6	356
4	Swimming Microrobots: Soft, Reconfigurable, and Smart. Advanced Functional Materials, 2018, 28, 1707228.	14.9	154
5	IRONSperm: Sperm-templated soft magnetic microrobots. Science Advances, 2020, 6, eaba5855.	10.3	137
6	Magnetic Actuation Methods in Bio/Soft Robotics. Advanced Functional Materials, 2021, 31, 2005137.	14.9	126
7	Spermatozoa as Functional Components of Robotic Microswimmers. Advanced Materials, 2017, 29, 1606301.	21.0	125
8	Dynamic Polymeric Microtubes for the Remote ontrolled Capture, Guidance, and Release of Sperm Cells. Advanced Materials, 2016, 28, 4084-4089.	21.0	101
9	Propulsion Mechanism of Catalytic Microjet Engines. IEEE Transactions on Robotics, 2014, 30, 40-48.	10.3	73
10	How to Improve Spermbot Performance. Advanced Functional Materials, 2015, 25, 2763-2770.	14.9	61
11	Effect of surfactants on the performance of tubular and spherical micromotors – a comparative study. RSC Advances, 2014, 4, 20334-20340.	3.6	58
12	Three-dimensional closed-loop control of self-propelled microjets. Applied Physics Letters, 2013, 103, .	3.3	52
13	Nano-and Micromotors Designed for Cancer Therapy. Molecules, 2019, 24, 3410.	3.8	51
14	Microfluidic reactor for continuous cultivation of <i>Saccharomyces cerevisiae</i> . Biotechnology Progress, 2010, 26, 1259-1270.	2.6	47
15	Spermbots: potential impact for drug delivery and assisted reproductive technologies. Expert Opinion on Drug Delivery, 2014, 11, 1125-1129.	5.0	40
16	The motility-based swim-up technique separates bull sperm based on differences in metabolic rates and tail length. PLoS ONE, 2019, 14, e0223576.	2.5	35
17	Biocompatible, accurate, and fully autonomous: a sperm-driven micro-bio-robot. Journal of Micro-Bio Robotics, 2014, 9, 79-86.	2.1	34
18	Impact of Segmented Magnetization on the Flagellar Propulsion of Spermâ€Templated Microrobots. Advanced Science, 2021, 8, 2004037.	11.2	29

Veronika Magdanz

#	Article	IF	CITATIONS
19	Wireless Magnetic-Based Closed-Loop Control of Self-Propelled Microjets. PLoS ONE, 2014, 9, e83053.	2.5	27
20	Precise Localization and Control of Catalytic Janus Micromotors Using Weak Magnetic Fields. International Journal of Advanced Robotic Systems, 2015, 12, 2.	2.1	26
21	Sperm Dynamics in Tubular Confinement. Small, 2015, 11, 781-785.	10.0	21
22	Sperm–Particle Interactions and Their Prospects for Charge Mapping. Advanced Biology, 2019, 3, e1900061.	3.0	21
23	Resemblance between motile and magnetically actuated sperm cells. Applied Physics Letters, 2020, 116, .	3.3	20
24	Intuitive control of self-propelled microjets with haptic feedback. Journal of Micro-Bio Robotics, 2015, 10, 37-53.	2.1	16
25	Modeling of Unidirectional-Overloaded Transition in Catalytic Tubular Microjets. Journal of Physical Chemistry C, 2017, 121, 14854-14863.	3.1	9
26	Modeling of Spermbots in a Viscous Colloidal Suspension. Advanced Theory and Simulations, 2019, 2, 1900072.	2.8	8
27	Gelatin Microcartridges for Onboard Activation and Antioxidant Protection of Sperm. ACS Applied Bio Materials, 2020, 3, 1616-1627.	4.6	8
28	Characterization of Flagellar Propulsion of Soft Microrobotic Sperm in a Viscous Heterogeneous Medium. Frontiers in Robotics and AI, 2019, 6, 65.	3.2	7
29	Modeling and Characterization of the Passive Bending Stiffness of Nanoparticleâ€Coated Sperm Cells using Magnetic Excitation. Advanced Theory and Simulations, 2022, 5, .	2.8	5
30	Sperm-templated magnetic microrobots. , 2019, , .		4
31	Microâ€robots: Development of a Spermâ€Flagella Driven Microâ€Bioâ€Robot (Adv. Mater. 45/2013). Advanced Materials, 2013, 25, 6470-6470.	21.0	1
32	Sperm Migration: Sperm Dynamics in Tubular Confinement (Small 7/2015). Small, 2015, 11, 762-762.	10.0	0
33	Charge Mapping: Sperm–Particle Interactions and Their Prospects for Charge Mapping (Adv. Biosys.) Tj ETQq1 I	1 9:78431	4 rgBT /Over
34	Sizeâ€Dependent Inhibition of Sperm Motility by Copper Particles as a Path toward Male Contraception.	3.6	0

Advanced NanoBiomed Research, 0, , 2100152.