Lesley W Chow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/120731/publications.pdf

Version: 2024-02-01

471509 552781 1,010 27 17 26 citations h-index g-index papers 27 27 27 1856 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatial organization of biochemical cues in 3D-printed scaffolds to guide osteochondral tissue engineering. Biomaterials Science, 2021, 9, 6813-6829.	5 . 4	19
2	Interlayer bonding strength of 3D printed PEEK specimens. Soft Matter, 2021, 17, 4775-4789.	2.7	35
3	Fabricating spatially functionalized 3D-printed scaffolds for osteochondral tissue engineering. Journal of Biological Methods, 2021, 8, e146.	0.6	5
4	Strategies to Control or Mimic Growth Factor Activity for Bone, Cartilage, and Osteochondral Tissue Engineering. Bioconjugate Chemistry, 2021, 32, 861-878.	3.6	16
5	Solventâ€Cast 3D Printing of Biodegradable Polymer Scaffolds. Macromolecular Materials and Engineering, 2021, 306, 2100442.	3.6	7
6	3D printing with peptide–polymer conjugates for single-step fabrication of spatially functionalized scaffolds. Biomaterials Science, 2019, 7, 4237-4247.	5. 4	38
7	Electrospinning Functionalized Polymers for Use as Tissue Engineering Scaffolds. Methods in Molecular Biology, 2018, 1758, 27-39.	0.9	8
8	Plasmonic Chirality Imprinting on Nucleobaseâ€Displaying Supramolecular Nanohelices by Metal–Nucleobase Recognition. Angewandte Chemie - International Edition, 2017, 56, 2361-2365.	13.8	32
9	Plasmonic Chirality Imprinting on Nucleobaseâ€Displaying Supramolecular Nanohelices by Metal–Nucleobase Recognition. Angewandte Chemie, 2017, 129, 2401-2405.	2.0	10
10	Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels. Acta Biomaterialia, 2017, 51, 75-88.	8.3	49
11	Peptideâ€Functionalized Fluorescent Particles for In Situ Detection of Nitric Oxide via Peroxynitriteâ€Mediated Nitration. Advanced Healthcare Materials, 2017, 6, 1700383.	7.6	7
12	Multimodal Hydrogel-Based Platform To Deliver and Monitor Cardiac Progenitor/Stem Cell Engraftment. ACS Central Science, 2017, 3, 338-348.	11.3	25
13	Controlled Sub-Nanometer Epitope Spacing in a Three-Dimensional Self-Assembled Peptide Hydrogel. ACS Nano, 2016, 10, 11096-11104.	14.6	36
14	Temporally degradable collagen–mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells. Biomaterials, 2016, 99, 56-71.	11.4	56
15	Creating biomaterials with spatially organized functionality. Experimental Biology and Medicine, 2016, 241, 1025-1032.	2.4	8
16	Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds. Advanced Healthcare Materials, 2016, 5, 1656-1666.	7.6	21
17	Pericyte Seeded Dual Peptide Scaffold with Improved Endothelialization for Vascular Graft Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 3046-3055.	7.6	33
18	Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles. Advanced Materials, 2015, 27, 5147-5152.	21.0	80

#	Article	IF	CITATIONS
19	Modular and Versatile Spatial Functionalization of Tissue Engineering Scaffolds through Fiberâ€Initiated Controlled Radical Polymerization. Advanced Functional Materials, 2015, 25, 5748-5757.	14.9	35
20	Controlled Polymerization: Modular and Versatile Spatial Functionalization of Tissue Engineering Scaffolds through Fiberâ€Initiated Controlled Radical Polymerization (Adv. Funct. Mater. 36/2015). Advanced Functional Materials, 2015, 25, 5718-5718.	14.9	0
21	Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials, 2015, 54, 213-225.	11.4	139
22	Electrostatic Control of Structure in Selfâ€Assembled Membranes. Small, 2014, 10, 500-505.	10.0	32
23	Biomimetic Materials: Peptideâ€Directed Spatial Organization of Biomolecules in Dynamic Gradient Scaffolds (Adv. Healthcare Mater. 9/2014). Advanced Healthcare Materials, 2014, 3, 1350-1350.	7.6	1
24	The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers. Biomaterials, 2014, 35, 9311-9321.	11.4	41
25	Peptideâ€Directed Spatial Organization of Biomolecules in Dynamic Gradient Scaffolds. Advanced Healthcare Materials, 2014, 3, 1381-1386.	7.6	44
26	A bioactive self-assembled membrane to promote angiogenesis. Biomaterials, 2011, 32, 1574-1582.	11.4	133
27	Self-assembling nanostructures to deliver angiogenic factors to pancreatic islets. Biomaterials, 2010, 31, 6154-6161.	11.4	100