List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1207222/publications.pdf Version: 2024-02-01

YOSHKE DEMIZH

#	Article	IF	CITATIONS
1	The effects of magainin 2-derived and rationally designed antimicrobial peptides on Mycoplasma pneumoniae. PLoS ONE, 2022, 17, e0261893.	2.5	0
2	Molecular Design, Synthesis, and Evaluation of SNIPER(ER) that Induces of ERα. Methods in Molecular Biology, 2022, 2418, 363-382.	0.9	0
3	FcÎ ³ Receptor-Dependent Internalization and Off-Target Cytotoxicity of Antibody-Drug Conjugate Aggregates. Pharmaceutical Research, 2022, 39, 89-103.	3.5	12
4	Development of Chimeric Molecules That Degrade the Estrogen Receptor Using Decoy Oligonucleotide Ligands. ACS Medicinal Chemistry Letters, 2022, 13, 134-139.	2.8	15
5	Antiviral activity of ciclesonide acetal derivatives blocking SARS-CoV-2 RNA replication. Journal of Pharmacological Sciences, 2022, 149, 81-84.	2.5	2
6	Copper-Catalyzed Asymmetric Oxidative Desymmetrization of 2-Substituted 1,2,3-Triols. Journal of Organic Chemistry, 2022, 87, 6479-6491.	3.2	5
7	Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions. Processes, 2022, 10, 924.	2.8	8
8	Control of STING Agonistic/Antagonistic Activity Using Amine-Skeleton-Based c-di-GMP Analogues. International Journal of Molecular Sciences, 2022, 23, 6847.	4.1	2
9	Helix-Stabilized Cell-Penetrating Peptides for Delivery of Antisense Morpholino Oligomers: Relationships among Helicity, Cellular Uptake, and Antisense Activity. Bioconjugate Chemistry, 2022, 33, 1311-1318.	3.6	8
10	Development of Rapid and Facile Solidâ€Phase Synthesis of PROTACs via a Variety of Binding Styles. ChemistryOpen, 2022, 11, .	1.9	10
11	Organocatalytic Synthesis of Phenols from Diaryliodonium Salts with Water under Metal-Free Conditions. Organic Letters, 2022, 24, 5149-5154.	4.6	6
12	Amine skeleton-based c-di-GMP derivatives as biofilm formation inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 32, 127713.	2.2	4
13	Development of Selective TGR5 Ligands Based on the 5,6,7,8â€Tetrahydroâ€5,5,8,8â€ŧetramethylnaphthalene Skeleton. ChemMedChem, 2021, 16, 458-462.	3.2	4
14	Design and synthesis of novel estrogen receptor antagonists with acetal containing biphenylmethane skeleton. Results in Chemistry, 2021, 3, 100124.	2.0	0
15	Development of Antimicrobial Stapled Peptides Based on Magainin 2 Sequence. Molecules, 2021, 26, 444.	3.8	26
16	Protocols for Synthesis of SNIPERs and the Methods to Evaluate the Anticancer Effects. Methods in Molecular Biology, 2021, 2365, 331-347.	0.9	2
17	Development of a Hematopoietic Prostaglandin D Synthase-Degradation Inducer. ACS Medicinal Chemistry Letters, 2021, 12, 236-241.	2.8	19
18	Transition Metal-Free O-Arylation of Quinoxalin-2-ones with Diaryliodonium Salts. Heterocycles, 2021, 103, 502.	0.7	0

#	Article	IF	CITATIONS
19	Helical Antimicrobial Peptide Foldamers Containing Nonâ€proteinogenic Amino Acids. ChemMedChem, 2021, 16, 1226-1233.	3.2	20
20	Approach to Establishment of Control Strategy for Oral Solid Dosage Forms Using Continuous Manufacturing. Chemical and Pharmaceutical Bulletin, 2021, 69, 211-217.	1.3	3
21	TRIP12 promotes small-molecule-induced degradation through K29/K48-branched ubiquitin chains. Molecular Cell, 2021, 81, 1411-1424.e7.	9.7	43
22	Synthesis and characterization of PNA oligomers containing preQ1 as a positively charged guanine analogue. Bioorganic and Medicinal Chemistry Letters, 2021, 39, 127850.	2.2	3
23	Development of Agonist-Based PROTACs Targeting Liver X Receptor. Frontiers in Chemistry, 2021, 9, 674967.	3.6	10
24	Miroestrol Quantification in <i>Pueraria mirifica</i> Crude Drugs and Products by Single-Reference UPLC/PDA/MS Using Relative Molar Sensitivities to Kwakhurin. Chemical and Pharmaceutical Bulletin, 2021, 69, 573-580.	1.3	4
25	Structure–activity relationship study of amphipathic antimicrobial peptides using helixâ€destabilizing sarcosine. Journal of Peptide Science, 2021, 27, e3360.	1.4	6
26	Development of ciclesonide analogues that block SARS-CoV-2 RNA replication. Bioorganic and Medicinal Chemistry Letters, 2021, 43, 128052.	2.2	2
27	Nickel-Catalyzed Hydrodeoxygenation of Aryl Sulfamates with Alcohols as Mild Reducing Agents. Synthesis, 2021, 53, 4449-4460.	2.3	1
28	Peptide Stapling Improves the Sustainability of a Peptide-Based Chimeric Molecule That Induces Targeted Protein Degradation. International Journal of Molecular Sciences, 2021, 22, 8772.	4.1	12
29	Nickel-Catalyzed Hydrodeoxygenation of Aryl Sulfamates with Alcohols as Mild Reducing Agents. Synthesis, 2021, 53, e5-e5.	2.3	0
30	<i>N</i> -Nitrosodimethylamine (NDMA) Formation from Ranitidine Impurities: Possible Root Causes of the Presence of NDMA in Ranitidine Hydrochloride. Chemical and Pharmaceutical Bulletin, 2021, 69, 872-876.	1.3	12
31	Discovery of non-proteinogenic amino acids inhibiting biofilm formation by S. aureus and methicillin-resistant S. aureus. Bioorganic and Medicinal Chemistry Letters, 2021, 48, 128259.	2.2	1
32	Synthesis of Norgestomet and its 17β-isomer and evaluation of their agonistic activities against progesterone receptor. Bioorganic and Medicinal Chemistry, 2021, 49, 116425.	3.0	0
33	Discovery of a Highly Potent and Selective Degrader Targeting Hematopoietic Prostaglandin D Synthase via In Silico Design. Journal of Medicinal Chemistry, 2021, 64, 15868-15882.	6.4	18
34	Synthesis of Chiral αâ€Trifluoromethyl α,αâ€Disubstituted αâ€Amino Acids and Conformational Analysis of Lâ€Leuâ€Based Peptides with (<i>R</i>)―or (<i>S</i>)â€Î±â€Trifluoromethylalanine. ChemistrySelect, 2020, 5, 10882-10886.	1.5	5
35	Design, Synthesis, and Biological Activity of Conformationally Restricted Analogues of Silibinin. ACS Omega, 2020, 5, 23164-23174.	3.5	4
36	Rational Design of Helixâ€Stabilized Antimicrobial Peptide Foldamers Containing α,αâ€Disubstituted Amino Acids or Sideâ€Chain Stapling. ChemPlusChem, 2020, 85, 2731-2736.	2.8	15

#	Article	IF	CITATIONS
37	Development of Photoswitchable Estrogen Receptor Ligands. Chemical and Pharmaceutical Bulletin, 2020, 68, 398-402.	1.3	7
38	De Novo Design of Cellâ€Penetrating Foldamers. Chemical Record, 2020, 20, 912-921.	5.8	15
39	Design and synthesis of peptide-based chimeric molecules to induce degradation of the estrogen and androgen receptors. Bioorganic and Medicinal Chemistry, 2020, 28, 115595.	3.0	8
40	Deubiquitylase USP25 prevents degradation of BCR-ABL protein and ensures proliferation of Ph-positive leukemia cells. Oncogene, 2020, 39, 3867-3878.	5.9	25
41	Targeted Protein Degradation by Chimeric Compounds using Hydrophobic E3 Ligands and Adamantane Moiety. Pharmaceuticals, 2020, 13, 34.	3.8	8
42	Copperâ€Catalyzed Enantioselective Synthesis of Oxazolines from Aminotriols via Asymmetric Desymmetrization. Chemistry - an Asian Journal, 2020, 15, 840-844.	3.3	10
43	Selective Degradation of Target Proteins by Chimeric Small-Molecular Drugs, PROTACs and SNIPERs. Pharmaceuticals, 2020, 13, 74.	3.8	16
44	Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy. Journal of Cell Biology, 2020, 219, .	5.2	114
45	Facile Synthesis of Kwakhurin, a Marker Compound of <i>Pueraria mirifica</i> and Its Quantitative NMR Analysis for Standardization as a Reagent. Chemical and Pharmaceutical Bulletin, 2020, 68, 797-801.	1.3	4
46	Temperature-Dependent Formation of <i>N</i> -Nitrosodimethylamine during the Storage of Ranitidine Reagent Powders and Tablets. Chemical and Pharmaceutical Bulletin, 2020, 68, 1008-1012.	1.3	22
47	Design and Synthesis of 4-(2-Pyrrolyl)-4-phenylheptane Derivatives as Estrogen Receptor Antagonists. Heterocycles, 2020, 101, 429.	0.7	0
48	Inhibition of β-amyloid–induced neurotoxicity by planar analogues of procyanidin B3. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2659-2663.	2.2	8
49	Palladium-Catalyzed Synthesis of Deuterated Alkenes through Deuterodechlorination of Alkenyl Chlorides. Organic Process Research and Development, 2019, 23, 1552-1557.	2.7	8
50	Development of Amphipathic Antimicrobial Peptide Foldamers Based on Magainin 2 Sequence. ChemMedChem, 2019, 14, 1911-1916.	3.2	16
51	Rapid and efficient high-performance liquid chromatography analysis of N-nitrosodimethylamine impurity in valsartan drug substance and its products. Scientific Reports, 2019, 9, 11852.	3.3	36
52	Development of Small Molecule Chimeras That Recruit AhR E3 Ligase to Target Proteins. ACS Chemical Biology, 2019, 14, 2822-2832.	3.4	71
53	Development of 2-aminoisobutyric acid (Aib)-rich cell-penetrating foldamers for efficient siRNA delivery. Chemical Communications, 2019, 55, 7792-7795.	4.1	22
54	Rational design of novel amphipathic antimicrobial peptides focused on the distribution of cationic amino acid residues. MedChemComm, 2019, 10, 896-900.	3.4	15

#	Article	IF	CITATIONS
55	Facile Synthesis of αâ€ <i>exo</i> â€Methylene Ketones from α,αâ€Disubstituted Allyl Alcohols by Electrochemical Oxidative Migration. ChemElectroChem, 2019, 6, 4169-4172.	3.4	7
56	Analysis of an Impurity, <i>N</i> -Nitrosodimethylamine, in Valsartan Drug Substances and Associated Products Using GC-MS. Biological and Pharmaceutical Bulletin, 2019, 42, 547-551.	1.4	17
57	Refining Calibration Procedures of Circular Dichroism Spectrometer to Improve Usability. Analytical Sciences, 2019, 35, 1275-1278.	1.6	0
58	Abstract C125: Development of small molecule chimeras that recruit aryl-hydrocarbon receptor (AhR) E3 ligase to induce degradation of target proteins. Molecular Cancer Therapeutics, 2019, 18, C125-C125.	4.1	1
59	Design and synthesis of estrogen receptor ligands with a 4-heterocycle-4-phenylheptane skeleton. Bioorganic and Medicinal Chemistry, 2018, 26, 1638-1642.	3.0	5
60	Structural Development of Cell-Penetrating Peptides Containing Cationic Proline Derivatives. Chemical and Pharmaceutical Bulletin, 2018, 66, 575-580.	1.3	11
61	Development of a Small Hybrid Molecule That Mediates Degradation of His-Tag Fused Proteins. Journal of Medicinal Chemistry, 2018, 61, 576-582.	6.4	22
62	Structural development of non-secosteroidal vitamin D receptor (VDR) ligands without any asymmetric carbon. Bioorganic and Medicinal Chemistry, 2018, 26, 6146-6152.	3.0	0
63	Left-Handed Helix of Three-Membered Ring Amino Acid Homopeptide Interrupted by an N–H···Ethereal O-Type Hydrogen Bond. Organic Letters, 2018, 20, 7830-7834.	4.6	7
64	Design and synthesis of cell-permeable fluorescent nitrilotriacetic acid derivatives. Bioorganic and Medicinal Chemistry, 2018, 26, 5494-5498.	3.0	2
65	Extent of Helical Induction Caused by Introducing α-Aminoisobutyric Acid into an Oligovaline Sequence. ACS Omega, 2018, 3, 6395-6399.	3.5	9
66	Development of helix-stabilized cell-penetrating peptides containing cationic α,α-disubstituted amino acids as helical promoters. Bioorganic and Medicinal Chemistry, 2017, 25, 1846-1851.	3.0	21
67	Development of an ON/OFF switchable fluorescent probe targeting His tag fused proteins in living cells. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3417-3422.	2.2	9
68	Efficient synthesis of a multi-substituted diphenylmethane skeleton as a steroid mimetic. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2590-2593.	2.2	6
69	Design and synthesis of novel selective estrogen receptor degradation inducers based on the diphenylheptane skeleton. MedChemComm, 2017, 8, 239-246.	3.4	11
70	Targeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules. Molecular Pharmacology, 2017, 91, 159-166.	2.3	45
71	Development of a peptide-based inducer of protein degradation targeting NOTCH1. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4985-4988.	2.2	24
72	Preorganized Cyclic α,α-Disubstituted α-Amino Acids Bearing Functionalized Side Chains That Act as Peptide-Helix Inducers. Journal of Organic Chemistry, 2017, 82, 10722-10726.	3.2	10

#	Article	IF	CITATIONS
73	Development of helix-stabilized antimicrobial peptides composed of lysine and hydrophobic α,α-disubstituted α-amino acid residues. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3950-3953.	2.2	12
74	Simple and efficient knockdown of His-tagged proteins by ternary molecules consisting of a His-tag ligand, a ubiquitin ligase ligand, and a cell-penetrating peptide. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4478-4481.	2.2	8
75	Rational Design and Synthesis of Post-Functionalizable Peptide Foldamers as Helical Templates. Bioconjugate Chemistry, 2017, 28, 3029-3035.	3.6	7
76	Diastereomeric Right―and Leftâ€Handed Helical Structures with Fourteen (<i>R</i>) hiral Centers. Chemistry - A European Journal, 2017, 23, 18120-18124.	3.3	10
77	Low pH-triggering changes in peptide secondary structures. Organic and Biomolecular Chemistry, 2017, 15, 6302-6305.	2.8	7
78	PNA monomers fully compatible with standard Fmoc-based solid-phase synthesis of pseudocomplementary PNA. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3337-3341.	2.2	8
79	Helical <scp>l</scp> –Leuâ€Based Peptides Having Chiral Fiveâ€Membered Carbocyclic Ring Amino Acids with an Ethylene Acetal Moiety. ChemistrySelect, 2017, 2, 8108-8114.	1.5	4
80	Tamoxifen and Fulvestrant Hybrids Showed Potency as Selective Estrogen Receptor Down-Regulators. Medicinal Chemistry, 2017, 13, 206-213.	1.5	0
81	1,4-Bis[(N-acetyl-l-phenylalanyl-glycyl-l-alanyl)aminomethyl]benzene. MolBank, 2016, 2016, M893.	0.5	0
82	Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator. Journal of Experimental Medicine, 2016, 213, 1441-1458.	8.5	41
83	The sideâ€chain hydroxy groups of a cyclic α,αâ€disubstituted αâ€amino acid promote oligopeptide 3 ₁₀ â€helix packing in the crystalline state. Biopolymers, 2016, 106, 757-768.	2.4	1
84	Handedness Preferences of Heterochiral Helical Peptides Containing Homochiral Peptide Segments. European Journal of Organic Chemistry, 2016, 2016, 840-846.	2.4	4
85	Synthesis of chiral fiveâ€membered carbocyclic ring amino acids with an acetal moiety and helical conformations of its homoâ€chiral homopeptides. Biopolymers, 2016, 106, 555-562.	2.4	11
86	Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids. Bioorganic and Medicinal Chemistry, 2016, 24, 2681-2687.	3.0	46
87	Synthesis and evaluation of raloxifene derivatives as a selective estrogen receptor down-regulator. Bioorganic and Medicinal Chemistry, 2016, 24, 2914-2919.	3.0	13
88	Development of a peptide-based inducer of nuclear receptors degradation. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2655-2658.	2.2	25
89	Helical structures of homo-chiral isotope-labeled α-aminoisobutyric acid peptides. Tetrahedron, 2016, 72, 5864-5871.	1.9	5
90	Influence of Lâ€Leu to Dâ€Leu Replacement on the Helical Secondary Structures of Lâ€Leuâ€Aibâ€Based Dodecapeptides. ChemistrySelect, 2016, 1, 5805-5811.	1.5	1

#	Article	IF	CITATIONS
91	Peptide Nucleic Acid with a Lysine Side Chain at the β-Position: Synthesis and Application for DNA Cleavage. Chemical and Pharmaceutical Bulletin, 2016, 64, 817-823.	1.3	2
92	Development of BCR-ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4865-4869.	2.2	97
93	Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment. Scientific Reports, 2016, 6, 33003.	3.3	53
94	αâ€Helical Structures of Oligopeptides with an Alternating lâ€Leuâ€Aib Segment. European Journal of Organic Chemistry, 2016, 2016, 2815-2820.	2.4	10
95	A Helix‣tabilized Cellâ€Penetrating Peptide as an Intracellular Delivery Tool. ChemBioChem, 2016, 17, 137-140.	2.6	55
96	Molecular Design, Synthesis, and Evaluation of SNIPER(ER) That Induces Proteasomal Degradation of ERα. Methods in Molecular Biology, 2016, 1366, 549-560.	0.9	22
97	Effects of alkyl side chains and terminal hydrophilicity on vitamin D receptor (VDR) agonistic activity based on the diphenylpentane skeleton. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5362-5366.	2.2	4
98	Effects of D-Leu Residues on the Helical Secondary Structures of L-Leu-Based Nonapeptides. Chemical and Pharmaceutical Bulletin, 2015, 63, 218-224.	1.3	3
99	Synthesis and Evaluation of Novel Carbocyclic Oxetanocin A (COA-Cl) Derivatives as Potential Tube Formation Agents. Chemical and Pharmaceutical Bulletin, 2015, 63, 701-709.	1.3	11
100	NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells. Scientific Reports, 2015, 4, 5952.	3.3	30
101	Methyl 2-[(2-{2-[(2-acetamidophenyl)ethynyl]benzamido} phenyl)ethynyl]benzoate. MolBank, 2015, 2015, M854.	0.5	0
102	Peptide foldamers composed of six-membered ring α,α-disubstituted α-amino acids with two changeable chiral acetalÂmoieties. Tetrahedron, 2015, 71, 3909-3914.	1.9	9
103	Synthesis and Resolution of Substituted [5]Carbohelicenes. Journal of Organic Chemistry, 2015, 80, 6502-6508.	3.2	30
104	Design, synthesis, and anti-HIV-1 activity of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and <i>N</i> -3,5-dimethylbenzyl-substituted urea derivatives. Antiviral Chemistry and Chemotherapy, 2015, 24, 3-18.	0.6	10
105	Synthesis and evaluation of tamoxifen derivatives with a long alkyl side chain as selective estrogen receptor down-regulators. Bioorganic and Medicinal Chemistry, 2015, 23, 3091-3096.	3.0	23
106	Design, synthesis, and anti-HIV-1 activity of 1-substituted 3-(3,5-dimethylbenzyl)triazine derivatives. Antiviral Chemistry and Chemotherapy, 2015, 24, 62-71.	0.6	10
107	Structural development of stapled short helical peptides as vitamin D receptor (VDR)–coactivator interaction inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 1055-1061.	3.0	24
108	A synthetic cannabinoid FDU-NNEI, two 2H-indazole isomers of synthetic cannabinoids AB-CHMINACA and NNEI indazole analog (MN-18), a phenethylamine derivative N–OH-EDMA, and a cathinone derivative dimethoxy-α-PHP, newly identified in illegal products. Forensic Toxicology, 2015, 33, 244-259.	2.4	41

#	Article	IF	CITATIONS
109	Plasmid DNA delivery using fluorescein-labeled arginine-rich peptides. Bioorganic and Medicinal Chemistry, 2015, 23, 4911-4918.	3.0	25
110	Structural development of stabilized helical peptides as inhibitors of estrogen receptor (ER)-mediated transcription. Bioorganic and Medicinal Chemistry, 2015, 23, 4132-4138.	3.0	22
111	A preorganized β-amino acid bearing a guanidinium side chain and its use in cell-penetrating peptides. Organic and Biomolecular Chemistry, 2015, 13, 5617-5620.	2.8	39
112	Synthesis of a bis-cationic $\hat{l}_{\pm}, \hat{l}_{\pm}$ -disubstituted amino acid (9-amino-bispidine-9-carboxylic acid) and its effects on the conformational properties of peptides. Tetrahedron, 2015, 71, 2241-2245.	1.9	12
113	Amino equatorial effect of a six-membered ring amino acid on its peptide 310- and α-helices. Tetrahedron, 2015, 71, 2409-2420.	1.9	9
114	Topological Study of the Structures of Heterochiral Peptides Containing Equal Amounts of <scp>l</scp> -Leu and <scp>d</scp> -Leu. Journal of Organic Chemistry, 2015, 80, 8597-8603.	3.2	15
115	Development of Cell-Penetrating R7 Fragment-Conjugated Helical Peptides as Inhibitors of Estrogen Receptor-Mediated Transcription. Bioconjugate Chemistry, 2014, 25, 1921-1924.	3.6	28
116	Design and synthesis of tamoxifen derivatives as a selective estrogen receptor down-regulator. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 87-89.	2.2	26
117	Isoheleproline: a new amino acid-sesquiterpene adduct from Inula helenium. Journal of Natural Medicines, 2014, 68, 432-435.	2.3	10
118	Conformational studies on peptides having chiral five-membered ring amino acid with two azido or triazole functional groups within the sequence of Aib residues. Tetrahedron, 2014, 70, 8900-8907.	1.9	8
119	Helical Peptide-Foldamers Having a Chiral Five-Membered Ring Amino Acid with Two Azido Functional Groups. Journal of Organic Chemistry, 2014, 79, 9125-9140.	3.2	18
120	Amphipathic short helix-stabilized peptides with cell-membrane penetrating ability. Bioorganic and Medicinal Chemistry, 2014, 22, 2403-2408.	3.0	62
121	Development of Stabilized Short Helical Peptides and Their Functionalization. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 1336-1347.	0.1	0
122	Synthesis and evaluation of novel 3-(3,5-dimethylbenzyl)uracil analogs as potential anti-HIV-1 agents. Bioorganic and Medicinal Chemistry, 2013, 21, 5900-5906.	3.0	19
123	Helical Foldamer Containing a Combination of Cyclopentane-1,2-diamine and 2,2-Dimethylmalonic Acid. Journal of Organic Chemistry, 2013, 78, 9991-9994.	3.2	7
124	Development of hybrid small molecules that induce degradation of estrogen receptorâ€alpha and necrotic cell death in breast cancer cells. Cancer Science, 2013, 104, 1492-1498.	3.9	112
125	Development of stapled short helical peptides capable of inhibiting vitamin D receptor (VDR)–coactivator interactions. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4292-4296.	2.2	22
126	Oligopeptides with Equal Amounts of <scp>l</scp> - and <scp>d</scp> -Amino Acids May Prefer a Helix Screw Sense. Journal of Organic Chemistry, 2013, 78, 12106-12113.	3.2	19

#	Article	IF	CITATIONS
127	Helical Oligomers with a Changeable Chiral Acetal Moiety. European Journal of Organic Chemistry, 2013, 2013, 7679-7682.	2.4	10
128	Abstract B255: Development of hybrid small molecules that induce degradation of estrogen receptor-alpha and necrotic cell death in breast cancer cells , 2013, , .		0
129	Twisted Structure of a Cyclic Hexapeptide Containing a Combination of Alternating l-Leu-d-Leu-Aib Segments. Journal of Organic Chemistry, 2012, 77, 9361-9365.	3.2	8
130	Helical Structures of Bicyclic <i>α</i> â€Amino Acid Homochiral Oligomers with the Stereogenic Centers at the Sideâ€Chain Fusedâ€Ring Junctions. Helvetica Chimica Acta, 2012, 95, 1694-1713.	1.6	17
131	Solid-Phase Nucleophilic Fluorination. Synthetic Communications, 2012, 42, 1724-1730.	2.1	4
132	Conformations of helical Aib peptides containing a pair of <scp>l</scp> â€amino acid and <scp>d</scp> â€amino acid. Journal of Peptide Science, 2012, 18, 466-475.	1.4	17
133	Design and synthesis of estrogen receptor degradation inducer based on a protein knockdown strategy. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1793-1796.	2.2	78
134	Monoallylation of 1,2â€Ðiols by Pd/Sn Bimetallic Catalysis. Chemistry - A European Journal, 2012, 18, 2477-2480.	3.3	12
135	Oneâ€Handed Helical Screw Direction of Homopeptide Foldamer Exclusively Induced by Cyclic αâ€Amino Acid Sideâ€Chain Chiral Centers. Chemistry - A European Journal, 2012, 18, 2430-2439.	3.3	50
136	Conformational studies on peptides containing α,α-disubstituted α-amino acids: chiral cyclic α,α-disubstituted α-amino acid as an α-helical inducer. Organic and Biomolecular Chemistry, 2011, 9, 3303.	2.8	66
137	Identification of Mutaprodenafil in a Dietary Supplement and Its Subsequent Synthesis. Chemical and Pharmaceutical Bulletin, 2011, 59, 1314-1316.	1.3	17
138	Design, synthesis and X-ray crystallographic study of new nonsecosteroidal vitamin D receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6104-6107.	2.2	20
139	β-PNA: Peptide nucleic acid (PNA) with a chiral center at the β-position of the PNA backbone. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7317-7320.	2.2	25
140	Effect of one Dâ€Leu residue on rightâ€handed helical â€Lâ€Leuâ€Aib―peptides in the crystal state. Journal of Peptide Science, 2011, 17, 420-426.	1.4	9
141	Screwâ€Sense Control of Helical Oligopeptides Containing Equal Amounts of <scp>L</scp> ―and <scp>D</scp> â€Amino Acids. Chemistry - A European Journal, 2011, 17, 11107-11109.	3.3	26
142	Enantioselective epoxidation of α,β-unsaturated ketones catalyzed by stapled helical l-Leu-based peptides. Tetrahedron, 2011, 67, 6155-6165.	1.9	47
143	Design of a stabilized short helical peptide and its application to catalytic enantioselective epoxidation of (E)-chalcone. Tetrahedron Letters, 2011, 52, 798-801.	1.4	25
144	Facile Synthesis of Stereoisomers of the Non-Secosteroidal Ligand LG190178 and their Evaluation Using the Mutant Vitamin D Receptor. Letters in Organic Chemistry, 2011, 8, 43-47.	0.5	7

#	Article	IF	CITATIONS
145	Solid-state conformation of diastereomeric -Pro-Pro-(Aib)4 sequences. Tetrahedron, 2010, 66, 2293-2296.	1.9	16
146	Facile synthesis of optically active oxindoles by copper-catalyzed asymmetric monotosylation of prochiral 1,3-diols. Tetrahedron: Asymmetry, 2010, 21, 1370-1373.	1.8	14
147	Controlling the helical screw sense of peptides with <i>C</i> â€ŧerminal Lâ€valine. Journal of Peptide Science, 2010, 16, 153-158.	1.4	15
148	Conformations of peptides containing a chiral cyclic α, αâ€disubstituted αâ€amino acid within the sequence of Aib residues. Journal of Peptide Science, 2010, 16, 621-626.	1.4	27
149	Three-Dimensional Structural Control of Diastereomeric Leu-Leu-Aib-Leu-Leu-Aib Sequences in the Solid State. Journal of Organic Chemistry, 2010, 75, 5234-5239.	3.2	18
150	Nonenzymatic kinetic resolution of racemic α-hydroxyalkanephosphonates with chiral copper catalyst. Tetrahedron Letters, 2009, 50, 5241-5244.	1.4	12
151	Helical-Screw Directions of Diastereoisomeric Cyclic α-Amino Acid Oligomers. Organic Letters, 2009, 11, 1135-1137.	4.6	26
152	Ring Contraction of \hat{I}_{\pm}, \hat{I}^2 -Unsaturated Cyclic Amines with cis-Dihydroxylation at the \hat{I}_{\pm}, \hat{I}^2 -Position. Heterocycles, 2009, 77, 311.	0.7	4
153	Direct electrochemical α-cyanation of N-protected cyclic amines. Organic and Biomolecular Chemistry, 2009, 7, 351-356.	2.8	48
154	Convenient synthesis of an enantiomerically pure bicyclic proline and its N-oxyl derivatives. Tetrahedron: Asymmetry, 2008, 19, 2659-2665.	1.8	23
155	Effecient Kinetic Resolution of Racemic Amino Aldehydes by Oxidation with <i>N</i> â€lodosuccinimide. Angewandte Chemie - International Edition, 2008, 47, 9458-9461.	13.8	46
156	High regioselectivity in electrochemical α-methoxylation of N-protected cyclic amines. Tetrahedron, 2008, 64, 3935-3942.	1.9	32
157	Asymmetric electrochemical oxidation of 1,2-diols, aminoalcohols, andÂaminoaldehydes in the presence of chiral copper catalyst. Tetrahedron, 2008, 64, 6675-6683.	1.9	45
158	Diastereoselective arylation of l-proline derivatives at the 5-position. Tetrahedron, 2008, 64, 7498-7503.	1.9	30
159	Efficient oxidation of alcohols electrochemically mediated by azabicyclo-N-oxyls. Tetrahedron Letters, 2008, 49, 48-52.	1.4	70
160	Chiral azabicyclo-N-oxyls mediated enantioselective electrooxidation of sec-alcohols. Tetrahedron Letters, 2008, 49, 5247-5251.	1.4	58
161	Oxidative C–C bond cleavage of N-alkoxycarbonylated cyclic amines by sodium nitrite in trifluoroacetic acid. Tetrahedron Letters, 2008, 49, 6728-6731.	1.4	16
162	Regioselective Protection of Sugars Catalyzed by Dimethyltin Dichloride. Organic Letters, 2008, 10, 5075-5077.	4.6	122

#	Article	IF	CITATIONS
163	Regioselective Introduction of Electrophiles into Piperidine Derivatives at the 4-Position. Heterocycles, 2008, 76, 177.	0.7	14
164	Nonenzymatic Kinetic Resolution of 3-Hydroxyalkanamides with Chiral Copper Catalyst. Synlett, 2008, 2008, 433-437.	1.8	6
165	Controlling 310-Helix and .ALPHAHelix of Short Peptides in the Solid State. Chemical and Pharmaceutical Bulletin, 2007, 55, 840-842.	1.3	40
166	Lipase-Catalyzed Kinetic Resolution of Cyclic <i>trans</i> -1,2-Diols Bearing a Diester Moiety:  Synthetic Application to Chiral Seven-Membered-Ring α,α-Disubstituted α-Amino Acid. Journal of Organic Chemistry, 2007, 72, 7750-7756.	3.2	11
167	Antiviral Activity of 3-(3,5-Dimethylbenzyl)Uracil Derivatives Against Hiv-1 and HCMV. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1553-1558.	1.1	9
168	Selective Molecular Transformation of 1, 2-Diols Based on Molecular Recognition. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 216-225.	0.1	9
169	Copper complex catalyzed asymmetric monosulfonylation of meso-vic-diols. Tetrahedron Letters, 2007, 48, 7605-7609.	1.4	57
170	Asymmetric oxidation of 1,2-diols using N-bromosuccinimide in the presence of chiral copper catalyst. Tetrahedron Letters, 2007, 48, 8668-8672.	1.4	81
171	Asymmetric tosylation of racemic 2-hydroxyalkanamides with chiral copper catalyst. Tetrahedron Letters, 2007, 48, 9080-9084.	1.4	44
172	Synthesis of 6-Arylthio Analogs of 2′,3′-Dideoxy-3′-Fluoroguanosine and Their Effect against Hepatitis B Virus Replication. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 655-665.	1.1	4
173	Synthesis and Anti-HIV-1 and Anti-HCMV Activity of 1-Substituted 3-(3,5-Dimethylbenzyl)uracil Derivatives. Chemical and Pharmaceutical Bulletin, 2006, 54, 325-333.	1.3	25
174	Electrochemical Oxidation of L-Prolinol Derivative Protected with 1-Alkoxy-2,2,2-trifluoroethyl Group. Electrochemistry, 2006, 74, 645-648.	1.4	13
175	Kinetic resolution of vic-amino alcohols catalyzed by a chiral Cu(II) complex. Tetrahedron Letters, 2006, 47, 8073-8077.	1.4	25
176	Asymmetric desymmetrization of meso-vic-diols by carbamoylation catalyzed with a chiral Cu(II) complex. Tetrahedron Letters, 2006, 47, 8453-8456.	1.4	35
177	Reaction of O6-methylguanosine with nitrite in the presence of carboxylic acid: synthesis of the purin-2-yl carboxylate. Tetrahedron Letters, 2005, 46, 8225-8228.	1.4	10
178	Side-Chain Chiral Centers of Amino Acid and Helical-Screw Handedness of Its Peptides. Journal of the American Chemical Society, 2005, 127, 11570-11571.	13.7	43
179	Chiral Centers in the Side Chains ofα-Amino Acids Control the Helical Screw Sense of Peptides. Angewandte Chemie - International Edition, 2004, 43, 5360-5363.	13.8	55
180	Asymmetric Ring Cleavage Reaction with a Combination of Optically Active Cycloalkane-1,2-diol and Lewis Acid: Application to Formal Synthesis of (-)-Alloyohimbane and Approach to Construction of Adjacent Chiral Quaternary Centers ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
181	Asymmetric ring cleavage reaction with a combination of optically active cycloalkane-1,2-diol and Lewis acid: application to formal synthesis of (â``)-alloyohimbane and approach to construction of adjacent chiral quaternary centers. Tetrahedron, 2004, 60, 2271-2281.	1.9	5
182	An Extended Planar C5 Conformation and a 310-Helical Structure of Peptide Foldamer Composed of Diverse -Ethylated ,-Disubstituted -Amino Acids. Chemistry - A European Journal, 2003, 9, 3082-3090.	3.3	41