List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12069837/publications.pdf Version: 2024-02-01

Μομαμαρ Ναυαβ

#	Article	IF	CITATIONS
1	Oxidized phospholipids cause changes in jejunum mucus that induce dysbiosis and systemic inflammation. Journal of Lipid Research, 2022, 63, 100153.	4.2	8
2	Genetic Regulation of Atherosclerosis-Relevant Phenotypes in Human Vascular Smooth Muscle Cells. Circulation Research, 2020, 127, 1552-1565.	4.5	60
3	Involvement of Lowâ€Density Lipoprotein Receptor in the Pathogenesis of Pulmonary Hypertension. Journal of the American Heart Association, 2020, 9, e012063.	3.7	16
4	Role of enterocyte stearoyl-Co-A desaturase-1 in LDLR-null mice. Journal of Lipid Research, 2018, 59, 1818-1840.	4.2	14
5	Treating the Intestine with Oral ApoA-I Mimetic Tg6F Reduces Tumor Burden in Mouse Models of Metastatic Lung Cancer. Scientific Reports, 2018, 8, 9032.	3.3	31
6	Ambient Ultrafine Particle Ingestion Alters Gut Microbiota in Association with Increased Atherogenic Lipid Metabolites. Scientific Reports, 2017, 7, 42906.	3.3	66
7	Oral Apolipoprotein Aâ€l Mimetic Dâ€4F Lowers HDLâ€Inflammatory Index in Highâ€Risk Patients: A Firstâ€inâ€Human Multipleâ€Dose, Randomized Controlled Trial. Clinical and Translational Science, 2017, 10, 455-469.	3.1	56
8	NOTCH1 is a mechanosensor in adult arteries. Nature Communications, 2017, 8, 1620.	12.8	205
9	Transgenic tomatoes expressing the 6F peptide and ezetimibe prevent diet-induced increases of IFN-β and cholesterol 25-hydroxylase in jejunum. Journal of Lipid Research, 2017, 58, 1636-1647.	4.2	13
10	Tobacco Smoke Exposure Reduces Paraoxonase Activity in a Murine Model. International Journal of Biomedical Science, 2017, 13, 20-25.	0.1	1
11	Apolipoprotein E ^{â^'/â^'} Mice Lacking Hemopexin Develop Increased Atherosclerosis via Mechanisms That Include Oxidative Stress and Altered Macrophage Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1152-1163.	2.4	29
12	Tg6F ameliorates the increase in oxidized phospholipids in the jejunum of mice fed unsaturated LysoPC or WD. Journal of Lipid Research, 2016, 57, 832-847.	4.2	20
13	Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 274-284.	2.4	31
14	Efficacy of tomato concentrates in mouse models of dyslipidemia and cancer. Pharmacology Research and Perspectives, 2015, 3, e00154.	2.4	17
15	Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation. Journal of Lipid Research, 2015, 56, 1206-1221.	4.2	20
16	Proinflammatory Highâ€Density Lipoprotein Results from Oxidized Lipid Mediators in the Pathogenesis of Both Idiopathic and Associated Types of Pulmonary Arterial Hypertension. Pulmonary Circulation, 2015, 5, 640-648.	1.7	37
17	Small lipidated anti-obesity compounds derived from neuromedin U. European Journal of Medicinal Chemistry, 2015, 101, 616-626.	5.5	17
18	Source and role of intestinally derived lysophosphatidic acid in dyslipidemia and atherosclerosis. Journal of Lipid Research, 2015, 56, 871-887.	4.2	41

#	Article	IF	CITATIONS
19	ApoA-I Mimetic Peptides: A Review of the Present Status. , 2015, , 15-27.		3
20	Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. Journal of Experimental Medicine, 2015, 212, 2147-2163.	8.5	86
21	Apolipoprotein A-I Mimetic Peptides in Mouse Models of Cancer. , 2015, , 55-62.		0
22	Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. Journal of Cell Biology, 2015, 211, 2114OIA269.	5.2	0
23	Apolipoprotein A-I mimetics. Current Opinion in Lipidology, 2014, 25, 304-308.	2.7	39
24	Apolipoprotein A-I Mimetic Peptide 4F Rescues Pulmonary Hypertension by Inducing MicroRNA-193-3p. Circulation, 2014, 130, 776-785.	1.6	80
25	Searching for a successful HDL-based treatment strategy. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 162-167.	2.4	22
26	Transgenic 6F tomatoes act on the small intestine to prevent systemic inflammation and dyslipidemia caused by Western diet and intestinally derived lysophosphatidic acid. Journal of Lipid Research, 2013, 54, 3403-3418.	4.2	60
27	Reducing plasma cholesterol is not the end of the quest. Atherosclerosis, 2013, 227, 35-36.	0.8	0
28	Heart Failure is Associated With Impaired Anti-Inflammatory and Antioxidant Properties of High-Density Lipoproteins. American Journal of Cardiology, 2013, 112, 1770-1777.	1.6	34
29	Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS. Biochemical and Biophysical Research Communications, 2013, 436, 462-466.	2.1	25
30	Diesel Exhaust Induces Systemic Lipid Peroxidation and Development of Dysfunctional Pro-Oxidant and Pro-Inflammatory High-Density Lipoprotein. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1153-1161.	2.4	127
31	Atmospheric ultrafine particles promote vascular calcification via the NF-κB signaling pathway. American Journal of Physiology - Cell Physiology, 2013, 304, C362-C369.	4.6	35
32	A novel approach to oral apoA-I mimetic therapy. Journal of Lipid Research, 2013, 54, 995-1010.	4.2	86
33	Ambient ultrafine particles alter lipid metabolism and HDL anti-oxidant capacity in LDLR-null mice. Journal of Lipid Research, 2013, 54, 1608-1615.	4.2	95
34	D-4F-mediated reduction in metabolites of arachidonic and linoleic acids in the small intestine is associated with decreased inflammation in low-density lipoprotein receptor-null mice. Journal of Lipid Research, 2012, 53, 437-445.	4.2	55
35	High-Density Lipoprotein and 4F Peptide Reduce Systemic Inflammation by Modulating Intestinal Oxidized Lipid Metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2553-2560.	2.4	62
36	HDL Mimetics Inhibit Tumor Development in Both Induced and Spontaneous Mouse Models of Colon Cancer. Molecular Cancer Therapeutics, 2012, 11, 1311-1319.	4.1	63

#	Article	IF	CITATIONS
37	Vasculitis, Atherosclerosis, and Altered HDL Composition in Heme-Oxygenase-1-Knockout Mice. International Journal of Hypertension, 2012, 2012, 1-6.	1.3	24
38	Apolipoprotein A-I Mimetic Peptides Inhibit Expression and Activity of Hypoxia-Inducible Factor-1α in Human Ovarian Cancer Cell Lines and a Mouse Ovarian Cancer Model. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 255-262.	2.5	39
39	Effects of lipid-probe interactions in biochemical fluorometric methods that assess HDL redox activity. Lipids in Health and Disease, 2012, 11, 87.	3.0	21
40	Dâ€4F, an apoAâ€I mimetic peptide, inhibits proliferation and tumorigenicity of epithelial ovarian cancer cells by upregulating the antioxidant enzyme MnSOD. International Journal of Cancer, 2012, 130, 1071-1081.	5.1	61
41	Salutary Effects of Hemodialysis on Low-Density Lipoprotein Proinflammatory and High-Density Lipoprotein Anti-inflammatory Properties in Patient With End-Stage Renal Disease. Journal of the National Medical Association, 2011, 103, 524-533.	0.8	30
42	Dysfunctional High-Density Lipoprotein and the Potential of Apolipoprotein A-1 Mimetic Peptides to Normalize the Composition and Function of Lipoproteins. Circulation Journal, 2011, 75, 1533-1538.	1.6	39
43	L-5F, an apolipoprotein A-I mimetic, inhibits tumor angiogenesis by suppressing VEGF/basic FCF signaling pathways. Integrative Biology (United Kingdom), 2011, 3, 479.	1.3	65
44	HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nature Reviews Cardiology, 2011, 8, 222-232.	13.7	506
45	HIV-1 infected patients with suppressed plasma viremia on treatment have pro-inflammatory HDL. Lipids in Health and Disease, 2011, 10, 35.	3.0	25
46	Paraoxonase 2 Deficiency Alters Mitochondrial Function and Exacerbates the Development of Atherosclerosis. Antioxidants and Redox Signaling, 2011, 14, 341-351.	5.4	151
47	Treatment of patients with cardiovascular disease with L-4F, an apo-A1 mimetic, did not improve select biomarkers of HDL function. Journal of Lipid Research, 2011, 52, 361-373.	4.2	129
48	A biochemical fluorometric method for assessing the oxidative properties of HDL. Journal of Lipid Research, 2011, 52, 2341-2351.	4.2	70
49	Anti-inflammatory and Antioxidant Properties of HDLs Are Impaired in Type 2 Diabetes. Diabetes, 2011, 60, 2617-2623.	0.6	162
50	Chronic Inflammatory Disorders and Accelerated Atherosclerosis: Chronic Kidney Disease. Current Pharmaceutical Design, 2011, 17, 17-20.	1.9	49
51	Enhancement by LDL of transfer of L-4F and oxidized lipids to HDL in C57BL/6J mice and human plasma. Journal of Lipid Research, 2011, 52, 1795-1809.	4.2	17
52	Intestine may be a major site of action for the apoA-I mimetic peptide 4F whether administered subcutaneously or orally. Journal of Lipid Research, 2011, 52, 1200-1210.	4.2	61
53	L-4F Differentially Alters Plasma Levels of Oxidized Fatty Acids Resulting in more Anti-Inflammatory HDL in Mice. Drug Metabolism Letters, 2010, 4, 139-148.	0.8	50
54	Oxpholipin 11D: An Anti-Inflammatory Peptide That Binds Cholesterol and Oxidized Phospholipids. PLoS ONE, 2010, 5, e10181.	2.5	8

#	Article	IF	CITATIONS
55	Structure and Function of HDL Mimetics. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 164-168.	2.4	102
56	L-4F Alters Hyperlipidemic (But Not Healthy) Mouse Plasma to Reduce Platelet Aggregation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 283-289.	2.4	27
57	Apolipoprotein A-I Mimetic Peptides Prevent Atherosclerosis Development and Reduce Plaque Inflammation in a Murine Model of Diabetes. Diabetes, 2010, 59, 3223-3228.	0.6	66
58	Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides inhibit tumor development in a mouse model of ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19997-20002.	7.1	184
59	Amelioration of nephropathy with apoA-1 mimetic peptide in apoE-deficient mice. Nephrology Dialysis Transplantation, 2010, 25, 3525-3534.	0.7	18
60	Treatment with apolipoprotein A-1 mimetic peptide reduces lupus-like manifestations in a murine lupus model of accelerated atherosclerosis. Arthritis Research and Therapy, 2010, 12, R93.	3.5	47
61	Mitogen-activated protein kinase phosphatase-1 deficiency decreases atherosclerosis in apolipoprotein E null mice by reducing monocyte chemoattractant protein-1 levels. Molecular Genetics and Metabolism, 2010, 101, 66-75.	1.1	17
62	HDL metabolism and activity in chronic kidney disease. Nature Reviews Nephrology, 2010, 6, 287-296.	9.6	128
63	The Effect of HDL Mimetic Peptide 4F on PON1. Advances in Experimental Medicine and Biology, 2010, 660, 167-172.	1.6	12
64	Near Term Prospects for Ameliorating Cardiovascular Aging. , 2010, , 279-306.		1
65	The role of dysfunctional HDL in atherosclerosis. Journal of Lipid Research, 2009, 50, S145-S149.	4.2	185
66	Hemoglobin and Its Scavenger Protein Haptoglobin Associate with ApoA-1-containing Particles and Influence the Inflammatory Properties and Function of High Density Lipoprotein. Journal of Biological Chemistry, 2009, 284, 18292-18301.	3.4	103
67	In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney International, 2009, 76, 437-444.	5.2	98
68	A novel method for oral delivery of apolipoprotein mimetic peptides synthesized from all L-amino acids. Journal of Lipid Research, 2009, 50, 1538-1547.	4.2	55
69	Apolipoprotein A-I mimetic peptides. Current Atherosclerosis Reports, 2009, 11, 52-57.	4.8	82
70	HDL as a Biomarker, Potential Therapeutic Target, and Therapy. Diabetes, 2009, 58, 2711-2717.	0.6	97
71	Dyslipidemia and cardiovascular diseases. Current Opinion in Lipidology, 2009, 20, 157-158.	2.7	4
72	Proatherogenic high-density lipoprotein, vascular inflammation, and mimetic peptides. Current Atherosclerosis Reports, 2008, 10, 171-176.	4.8	27

#	Article	IF	CITATIONS
73	Treatment with an apolipoprotein A-1 mimetic peptide in combination with pravastatin inhibits collagen-induced arthritis. Clinical Immunology, 2008, 127, 234-244.	3.2	48
74	The Effect of Apolipoprotein Mimetic Peptides in Inflammatory Disorders Other Than Atherosclerosis. Trends in Cardiovascular Medicine, 2008, 18, 61-66.	4.9	29
75	D-4F reduces EO6 immunoreactivity, SREBP-1c mRNA levels, and renal inflammation in LDL receptor-null mice fed a Western diet. Journal of Lipid Research, 2008, 49, 192-205.	4.2	49
76	Ambient Particulate Pollutants in the Ultrafine Range Promote Early Atherosclerosis and Systemic Oxidative Stress. Circulation Research, 2008, 102, 589-596.	4.5	551
77	Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. Journal of Lipid Research, 2008, 49, 1344-1352.	4.2	266
78	Anti-inflammatory apoA-I-mimetic peptides bind oxidized lipids with much higher affinity than human apoA-I. Journal of Lipid Research, 2008, 49, 2302-2311.	4.2	181
79	Apo A-1 Mimetic Peptides as Atheroprotective Agents in Murine Models. Current Drug Targets, 2008, 9, 204-209.	2.1	26
80	Inflammation and metabolic disorders. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 459-464.	2.5	95
81	Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy. Journal of Clinical Investigation, 2008, 118, 2917-2928.	8.2	146
82	Multiple indications for anti-inflammatory apolipoprotein mimetic peptides. Current Opinion in Investigational Drugs, 2008, 9, 1157-62.	2.3	25
83	Adenovirus-Mediated Expression of Human Paraoxonase 3 Protects Against the Progression of Atherosclerosis in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1368-1374.	2.4	58
84	High-Density Lipoprotein Cholesterol. Stroke, 2007, 38, 1104-1109.	2.0	61
85	Oxidation hypothesis of atherogenesis: HDL inflammatory index and apolipoprotein A-I mimetic peptides. Future Cardiology, 2007, 3, 309-319.	1.2	2
86	Differential Association of Hemoglobin with Proinflammatory High Density Lipoproteins in Atherogenic/Hyperlipidemic Mice. Journal of Biological Chemistry, 2007, 282, 23698-23707.	3.4	69
87	Lipoprotein inflammatory properties and serum amyloid A levels but not cholesterol levels predict lesion area in cholesterol-fed rabbits. Journal of Lipid Research, 2007, 48, 2344-2353.	4.2	101
88	Structural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I mimetic peptides. Journal of Lipid Research, 2007, 48, 1915-1923.	4.2	112
89	Peptide mimetics of apolipoproteins improve HDL function. Journal of Clinical Lipidology, 2007, 1, 142-147.	1.5	22
90	A novel anti-atherogenic role for COX-2—potential mechanism for the cardiovascular side effects of COX-2 inhibitors. Prostaglandins and Other Lipid Mediators, 2007, 84, 24-33.	1.9	20

#	Article	IF	CITATIONS
91	Modifying the anti-inflammatory effects of high-density lipoprotein. Current Atherosclerosis Reports, 2007, 9, 57-63.	4.8	32
92	High-density lipoprotein: Antioxidant and anti-inflammatory properties. Current Atherosclerosis Reports, 2007, 9, 244-248.	4.8	88
93	Paraoxonase-2 Deficiency Aggravates Atherosclerosis in Mice Despite Lower Apolipoprotein-B-containing Lipoproteins. Journal of Biological Chemistry, 2006, 281, 29491-29500.	3.4	149
94	Apolipoprotein A-I mimetic peptides and their role in atherosclerosis prevention. Nature Clinical Practice Cardiovascular Medicine, 2006, 3, 540-547.	3.3	117
95	Mechanisms of Disease: proatherogenic HDL—an evolving field. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 504-511.	2.8	210
96	Adenovirus mediated expression of human paraoxonase 2 protects against the development of atherosclerosis in apolipoprotein E-deficient mice. Molecular Genetics and Metabolism, 2006, 89, 368-373.	1.1	80
97	Apolipoprotein A-I Mimetic Peptides. , 2006, , 329-331.		0
98	Synthetic peptides: managing lipid disorders. Current Opinion in Lipidology, 2006, 17, 233-237.	2.7	11
99	Potential clinical utility of high-density lipoprotein-mimetic peptides. Current Opinion in Lipidology, 2006, 17, 440-444.	2.7	22
100	Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis and Rheumatism, 2006, 54, 2541-2549.	6.7	360
101	Oral amphipathic peptides as therapeutic agents. Expert Opinion on Investigational Drugs, 2006, 15, 13-21.	4.1	23
102	D-4F decreases brain arteriole inflammation and improves cognitive performance in LDL receptor-null mice on a Western diet. Journal of Lipid Research, 2006, 47, 2148-2160.	4.2	66
103	Understanding Changes in High Density Lipoproteins During the Acute Phase Response. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1687-1688.	2.4	72
104	The paraoxonase gene family and atherosclerosis. Free Radical Biology and Medicine, 2005, 38, 153-163.	2.9	255
105	The Role of High-Density Lipoprotein in Inflammation. Trends in Cardiovascular Medicine, 2005, 15, 158-161.	4.9	136
106	An Apolipoprotein A-I Mimetic Works Best in the Presence of Apolipoprotein A-I. Circulation Research, 2005, 97, 1085-1086.	4.5	14
107	Increased Atherosclerosis in Mice Lacking Apolipoprotein A-I Attributable to Both Impaired Reverse Cholesterol Transport and Increased Inflammation. Circulation Research, 2005, 97, 763-771.	4.5	165
108	An Oral ApoJ Peptide Renders HDL Antiinflammatory in Mice and Monkeys and Dramatically Reduces Atherosclerosis in Apolipoprotein E–Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1932-1937.	2.4	117

#	Article	IF	CITATIONS
109	Oral Small Peptides Render HDL Antiinflammatory in Mice and Monkeys and Reduce Atherosclerosis in ApoE Null Mice. Circulation Research, 2005, 97, 524-532.	4.5	81
110	Apolipoprotein A-I Mimetic Peptides. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1325-1331.	2.4	246
111	D-4F and Statins Synergize to Render HDL Antiinflammatory in Mice and Monkeys and Cause Lesion Regression in Old Apolipoprotein E–Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1426-1432.	2.4	145
112	The double jeopardy of HDL. Annals of Medicine, 2005, 37, 173-178.	3.8	131
113	High-Density Lipoprotein Function. Journal of the American College of Cardiology, 2005, 46, 1792-1798.	2.8	254
114	PLTP deficiency improves the anti-inflammatory properties of HDL and reduces the ability of LDL to induce monocyte chemotactic activity. Journal of Lipid Research, 2004, 45, 1852-1858.	4.2	59
115	D-4F, an Apolipoprotein A-I Mimetic Peptide, Inhibits the Inflammatory Response Induced by Influenza A Infection of Human Type II Pneumocytes. Circulation, 2004, 110, 3252-3258.	1.6	121
116	Aromatic Residue Position on the Nonpolar Face of Class A Amphipathic Helical Peptides Determines Biological Activity. Journal of Biological Chemistry, 2004, 279, 26509-26517.	3.4	72
117	Potential Role for Mitogen-Activated Protein Kinase Phosphatase-1 in the Development of Atherosclerotic Lesions in Mouse Models. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1676-1681.	2.4	35
118	Apparent Paradox of Low-Fat "Healthy―Diets Increasing Plasma Levels of Oxidized Low-Density Lipoprotein and Lipoprotein(a). Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 392-393.	2.4	2
119	Antiinflammatory Properties of HDL. Circulation Research, 2004, 95, 764-772.	4.5	1,170
120	Oral D-4F Causes Formation of Pre-β High-Density Lipoprotein and Improves High-Density Lipoprotein–Mediated Cholesterol Efflux and Reverse Cholesterol Transport From Macrophages in Apolipoprotein E–Null Mice. Circulation, 2004, 109, 3215-3220.	1.6	325
121	Anti-Inflammatory Properties of HDL. Reviews in Endocrine and Metabolic Disorders, 2004, 5, 351-358.	5.7	34
122	Thematic review series: The Pathogenesis of Atherosclerosis The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. Journal of Lipid Research, 2004, 45, 993-1007.	4.2	585
123	Human apolipoprotein A-I and A-I mimetic peptides: potential for atherosclerosis reversal. Current Opinion in Lipidology, 2004, 15, 645-649.	2.7	74
124	Oral Synthetic Phospholipid (DMPC) Raises High-Density Lipoprotein Cholesterol Levels, Improves High-Density Lipoprotein Function, and Markedly Reduces Atherosclerosis in Apolipoprotein E–Null Mice. Circulation, 2003, 108, 1735-1739.	1.6	69
125	Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB Journal, 2003, 17, 1648-1657.	0.5	135
126	Inflammatory/Antiinflammatory Properties of High-Density Lipoprotein Distinguish Patients From Control Subjects Better Than High-Density Lipoprotein Cholesterol Levels and Are Favorably Affected by Simvastatin Treatment. Circulation, 2003, 108, 2751-2756.	1.6	545

#	Article	IF	CITATIONS
127	Pulsatile Versus Oscillatory Shear Stress Regulates NADPH Oxidase Subunit Expression. Circulation Research, 2003, 93, 1225-1232.	4.5	300
128	Human apolipoprotein Al mimetic peptides for the treatment of atherosclerosis. Current Opinion in Investigational Drugs, 2003, 4, 1100-4.	2.3	14
129	Influenza Infection Promotes Macrophage Traffic Into Arteries of Mice That Is Prevented by D-4F, an Apolipoprotein A-I Mimetic Peptide. Circulation, 2002, 106, 1127-1132.	1.6	177
130	ATP-Binding Cassette Transporter 1 Participates in LDL Oxidation by Artery Wall Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1877-1883.	2.4	36
131	Oxidized lipids as mediators of coronary heart disease. Current Opinion in Lipidology, 2002, 13, 363-372.	2.7	94
132	Oral Administration of an Apo A-I Mimetic Peptide Synthesized From D-Amino Acids Dramatically Reduces Atherosclerosis in Mice Independent of Plasma Cholesterol. Circulation, 2002, 105, 290-292.	1.6	400
133	Identification of genes induced by oxidized phospholipids in human aortic endothelial cells. Vascular Pharmacology, 2002, 38, 211-218.	2.1	22
134	Endothelial Cell Dynamics under Pulsating Flows: Significance of High Versus Low Shear Stress Slew Rates. Annals of Biomedical Engineering, 2002, 30, 646-656.	2.5	71
135	Protective Action of HDL-Associated PON1 Against LDL Oxidation. , 2002, , 125-136.		4
136	Human Paraoxonase-3 Is an HDL-Associated Enzyme With Biological Activity Similar to Paraoxonase-1 Protein but Is Not Regulated by Oxidized Lipids. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 542-547.	2.4	319
137	Paraoxonase-2 Is a Ubiquitously Expressed Protein with Antioxidant Properties and Is Capable of Preventing Cell-mediated Oxidative Modification of Low Density Lipoprotein. Journal of Biological Chemistry, 2001, 276, 44444-44449.	3.4	404
138	The Role of High-Density Lipoproteins in Oxidation and Inflammation. Trends in Cardiovascular Medicine, 2001, 11, 155-161.	4.9	139
139	Mitogen-activated Protein Kinase Phosphatase 1 Activity Is Necessary for Oxidized Phospholipids to Induce Monocyte Chemotactic Activity in Human Aortic Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 17030-17035.	3.4	46
140	HDL and the Inflammatory Response Induced by LDL-Derived Oxidized Phospholipids. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 481-488.	2.4	391
141	Oxidized Phospholipids Induce Changes in Hepatic Paraoxonase and ApoJ but Not Monocyte Chemoattractant Protein-1 via Interleukin-6. Journal of Biological Chemistry, 2001, 276, 1923-1929.	3.4	107
142	High-Density Lipoprotein Loses Its Anti-Inflammatory Properties During Acute Influenza A Infection. Circulation, 2001, 103, 2283-2288.	1.6	297
143	Pulsatile Flow Regulates Monocyte Adhesion to Oxidized Lipid-Induced Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1770-1776.	2.4	59
144	A new synthetic class A amphipathic peptide analogue protects mice from diet-induced atherosclerosis. Journal of Lipid Research, 2001, 42, 545-552.	4.2	138

#	Article	IF	CITATIONS
145	A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. Journal of Lipid Research, 2001, 42, 1308-1317.	4.2	292
146	Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide. Journal of Lipid Research, 2001, 42, 1096-1104.	4.2	203
147	High-Density Lipoprotein and the Dynamics of Atherosclerotic Lesions. Circulation, 2001, 104, 2386-2387.	1.6	27
148	Short-Term Feeding of Atherogenic Diet to Mice Results in Reduction of HDL and Paraoxonase That May Be Mediated by an Immune Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1946-1952.	2.4	74
149	Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. Journal of Lipid Research, 2000, 41, 1481-1494.	4.2	423
150	Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. Journal of Lipid Research, 2000, 41, 1495-1508.	4.2	353
151	Role of Group II Secretory Phospholipase A 2 in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1291-1298.	2.4	148
152	All ApoB-Containing Lipoproteins Induce Monocyte Chemotaxis and Adhesion When Minimally Modified. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1437-1446.	2.4	59
153	Role of Group II Secretory Phospholipase A ₂ in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1284-1290.	2.4	236
154	On the physiological role(s) of the paraoxonases. Chemico-Biological Interactions, 1999, 119-120, 379-388.	4.0	163
155	High-density lipoprotein increases intracellular calcium levels by releasing calcium from internal stores in human endothelial cells. Atherosclerosis, 1999, 143, 299-306.	0.8	29
156	Structural Identification of a Novel Pro-inflammatory Epoxyisoprostane Phospholipid in Mildly Oxidized Low Density Lipoprotein. Journal of Biological Chemistry, 1999, 274, 24787-24798.	3.4	190
157	Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature, 1998, 394, 284-287.	27.8	1,017
158	Estradiol Suppresses MCP-1 Expression In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1575-1582.	2.4	115
159	Paraoxonase and coronary heart disease. Current Opinion in Lipidology, 1998, 9, 319-324.	2.7	177
160	High density associated enzymes: their role in vascular biology. Current Opinion in Lipidology, 1998, 9, 449-456.	2.7	73
161	Structural Identification by Mass Spectrometry of Oxidized Phospholipids in Minimally Oxidized Low Density Lipoprotein That Induce Monocyte/Endothelial Interactions and Evidence for Their Presence in Vivo. Journal of Biological Chemistry, 1997, 272, 13597-13607.	3.4	691
162	Oxidized Lipids in Atherogenesis: Formation, Destruction and Action. Thrombosis and Haemostasis, 1997, 78, 195-199.	3.4	108

#	Article	IF	CITATIONS
163	The Yin and Yang of Oxidation in the Development of the Fatty Streak. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 831-842.	2.4	553
164	Enzymes and Proteins that are Associated with High Density Lipoprotein and their Role in the Anti-Inflammatory Capacity of HDL. Medical Science Symposia Series, 1996, , 599-601.	0.0	0
165	Pathogenesis of atherosclerosis. American Journal of Cardiology, 1995, 76, 18C-23C.	1.6	134
166	Atherosclerosis: Basic Mechanisms. Circulation, 1995, 91, 2488-2496.	1.6	1,387