Mihaiela C Stuparu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12069637/publications.pdf

Version: 2024-02-01

304743 1,619 47 22 citations h-index papers

39 g-index 49 49 49 1843 docs citations times ranked citing authors all docs

302126

#	Article	IF	CITATIONS
1	Poly(ß-hydroxy thioether)s: synthesis through thiol-epoxy â€~click' reaction and post-polymerization modification to main-chain polysulfonium salts. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 2-10.	2.2	8
2	Bilateral Aromatic Extension of Corannulene Nucleus. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
3	Corannulene Chalcogenides. Chemistry - an Asian Journal, 2021, 16, 20-29.	3.3	14
4	Buckybowl polymers: synthesis of corannulene-containing polymers through post-polymerization modification strategy. Polymer Chemistry, 2021, 12, 5209-5216.	3.9	5
5	Synthesis and Properties of Bis-corannulenes. Organic Letters, 2021, 23, 1468-1472.	4.6	9
6	Synthesis and characterization of corannulene-metal-organic framework support material for palladium catalyst: An excellent anode material for accelerated methanol oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126237.	4.7	8
7	Corannulene: A Curved Polyarene Building Block for the Construction of Functional Materials. Accounts of Chemical Research, 2021, 54, 2858-2870.	15.6	58
8	Synthesis and characterization of palladium nanoparticles-corannulene nanocomposite: An anode electrocatalyst for direct oxidation of methanol in alkaline medium. Journal of Electroanalytical Chemistry, 2021, 900, 115654.	3.8	1
9	Synthesis of azahelicenes through Mallory reaction of imine precursors: corannulene substrates provide an exception to the rule in oxidative photocyclizations of diarylethenes. Chemical Science, 2021, 12, 3977-3983.	7.4	14
10	Aggregation-free and high stability core–shell polymer nanoparticles with high fullerene loading capacity, variable fullerene type, and compatibility towards biological conditions. Chemical Science, 2021, 12, 4949-4957.	7.4	24
11	Mechanochemical Synthesis of Corannuleneâ€Based Curved Nanographenes. Angewandte Chemie - International Edition, 2020, 59, 21620-21626.	13.8	53
12	Novel amphiphilic corannulene additive for moisture-resistant perovskite solar cells. Chemical Communications, 2020, 56, 11997-12000.	4.1	15
13	Selenium and Tellurium Derivatives of Corannulene: Serendipitous Discovery of a Oneâ€Dimensional Stereoregular Coordination Polymer Crystal Based on Teâ€O Backbone and Sideâ€Chain Aromatic Array. Chemistry - A European Journal, 2020, 26, 15135-15139.	3.3	7
14	Corannuleneâ€Based Electron Acceptors: Combining Modular and Practical Synthesis with Electron Affinity and Solubility. Chemistry - A European Journal, 2020, 26, 3231-3235.	3.3	9
15	Synthesis of corannulene-based nanographenes. Communications Chemistry, 2019, 2, .	4.5	70
16	A general approach to non-fullerene electron acceptors based on the corannulene motif. Chemical Communications, 2019, 55, 3113-3116.	4.1	23
17	Photochemical Synthesis and Electronic Properties of Extended Corannulenes with Variable Fluorination Pattern. Journal of Organic Chemistry, 2018, 83, 3529-3536.	3.2	20
18	Corannulene: a molecular bowl of carbon with multifaceted properties and diverse applications. Chemical Communications, 2018, 54, 6503-6519.	4.1	142

#	Article	IF	CITATIONS
19	Thermoresponsive Corannulene. European Journal of Organic Chemistry, 2017, 2017, 570-576.	2.4	25
20	Ï€-Conjugated Discrete Oligomers Containing Planar and Nonplanar Aromatic Motifs. Journal of the American Chemical Society, 2017, 139, 3089-3094.	13.7	63
21	All-organic luminescent nanodots from corannulene and cyclodextrin nano-assembly: continuous-flow synthesis, non-linear optical properties, and bio-imaging applications. Materials Chemistry Frontiers, 2017 , 1 , 831 - 837 .	5.9	15
22	Polymeric Nanomaterials Based on the Buckybowl Motif: Synthesis through Ring-Opening Metathesis Polymerization and Energy Storage Applications. ACS Macro Letters, 2017, 6, 1212-1216.	4.8	32
23	Amphiphilic Corannulene Derivatives: Synthetic Access and Development of a Structure/Property Relationship in Thermoresponsive Buckybowl Amphiphiles. ACS Omega, 2017, 2, 4964-4971.	3.5	24
24	Post-polymerization modification reactions of poly(glycidyl methacrylate)s. RSC Advances, 2017, 7, 55874-55884.	3.6	118
25	Thiolâ€epoxy "click―chemistry: Application in preparation and postpolymerization modification of polymers. Journal of Polymer Science Part A, 2016, 54, 3057-3070.	2.3	112
26	Synthesis and Properties of a Buckybowl/Buckyball Dyad. Synlett, 2016, 27, 2101-2104.	1.8	7
27	Corannulenecarbaldehyde: Highâ€ÂYielding Synthesis by Rieche FormÂylation and Facile Access to a Variety of Corannulene Derivatives. European Journal of Organic Chemistry, 2016, 2016, 36-40.	2.4	25
28	Synthesis and Properties of Large Polycyclic Aromatic Hydrocarbons with Planar and Nonâ€Planar Structural Motifs. European Journal of Organic Chemistry, 2016, 2016, 6010-6014.	2.4	15
29	A photochemical approach to aromatic extension of the corannulene nucleus. Chemical Communications, 2016, 52, 9957-9960.	4.1	29
30	Host–guest interaction between corannulene and γ-cyclodextrin: mass spectrometric evidence of a 1 :  inclusion complex formation. RSC Advances, 2016, 6, 110001-110003.	3.6	13
31	Azaâ€Michael addition reaction: Postâ€polymerization modification and preparation of PEI/PEGâ€based polyester hydrogels from enzymatically synthesized reactive polymers. Journal of Polymer Science Part A, 2015, 53, 745-749.	2.3	53
32	Homopolymer bifunctionalization through sequential thiol–epoxy and esterification reactions: an optimization, quantification, and structural elucidation study. Polymer Chemistry, 2015, 6, 1393-1404.	3.9	78
33	Sequential Thiol-Epoxy and Esterification Reactions: A Facile Route to Bifunctional Homopolymer Sequences. Advances in Polymer Science, 2014, , 87-103.	0.8	3
34	Self-assembly of an interacting binary blend of diblock copolymers in thin films: a potential route to porous materials with reactive nanochannel chemistry. Soft Matter, 2014, 10, 5755.	2.7	19
35	Dual-Reactive Hyperbranched Polymer Synthesis through Proton Transfer Polymerization of Thiol and Epoxide Groups. Macromolecules, 2014, 47, 5070-5080.	4.8	76
36	Amphipathic Homopolymers for siRNA Delivery: Probing Impact of Bifunctional Polymer Composition on Transfection. Biomacromolecules, 2014, 15, 1707-1715.	5.4	45

3

#	Article	IF	CITATIONS
37	Towards Molecular Ribbons of Corannulene. Chemistry - A European Journal, 2013, 19, 13199-13206.	3.3	20
38	Rationally Designed Polymer Hosts of Fullerene. Angewandte Chemie - International Edition, 2013, 52, 7786-7790.	13.8	58
39	Structural, Optical, and Electrochemical Properties of Three-Dimensional Push–Pull Corannulenes. Journal of Organic Chemistry, 2012, 77, 11014-11026.	3.2	71
40	Facile and General Preparation of Multifunctional Main-Chain Cationic Polymers through Application of Robust, Efficient, and Orthogonal Click Chemistries. Journal of the American Chemical Society, 2012, 134, 17291-17297.	13.7	82
41	Phase separation of supramolecular and dynamic block copolymers. Polymer Chemistry, 2012, 3, 3033.	3.9	73
42	Effect of precursor chemical composition on the formation and stability of G-quadruplex core supramolecular star polymers. Polymer Chemistry, 2012, 3, 2615.	3.9	10
43	Supramolecular star polymers with compositional heterogeneity. Journal of Polymer Science Part A, 2012, 50, 1844-1850.	2.3	13
44	Effect of precursor chainâ€length on the formation and stability of poly(ethylene glycol)â€based supramolecular star polymers. Journal of Polymer Science Part A, 2012, 50, 2415-2420.	2.3	7
45	Synthesis and properties of star polymers with a <i>C₅</i> â€symmetric bowlâ€shaped aromatic core. Journal of Polymer Science Part A, 2012, 50, 2641-2649.	2.3	24
46	Efficient preparation and properties of triazole-linked corannulene derivatives. Tetrahedron, 2012, 68, 3527-3531.	1.9	12
47	Towards Macromolecular Architectures of Corannulene. Chimia, 2011, 65, 799-801.	0.6	9