Kasra Mohammadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12068571/publications.pdf

Version: 2024-02-01

82 4,245 38 papers citations h-index

g-index

3410
citing authors

101 all docs

101 does citations

101 times ranked

#	Article	IF	CITATIONS
1	Simulating a solar parabolic trough collector plant used for industrial process heat using an optimized operating scheme that utilizes flexible heat integration. Solar Energy, 2022, 236, 756-771.	6.1	12
2	Proposal and assessment of a novel multigeneration system based on a supercritical CO2 Brayton cycle driven by a solar power tower plant. AIP Conference Proceedings, 2022, , .	0.4	0
3	Optimization of solar-coal hybridization for low solar augmentation. Applied Energy, 2022, 319, 119225.	10.1	3
4	Techno-economic analysis of the impact of dynamic electricity prices on solar penetration in a smart grid environment with distributed energy storage. Applied Energy, 2021, 282, 116168.	10.1	41
5	Thermoeconomic analysis of a multigeneration system using waste heat from a triple power cycle. Applied Thermal Engineering, 2021, 190, 116790.	6.0	16
6	Modeling, Control, and Optimization of Multi-Generation and Hybrid Energy Systems. Processes, 2021, 9, 1125.	2.8	1
7	State-by-State comparison of combined heat and power to photovoltaic installations at manufacturing facilities with heat and power loads. Sustainable Energy Technologies and Assessments, 2021, 47, 101502.	2.7	5
8	Thermoeconomic Evaluation and Optimization of Using Different Environmentally Friendly Refrigerant Pairs for a Dual-Evaporator Cascade Refrigeration System. Processes, 2021, 9, 1855.	2.8	2
9	Thermodynamic and economic analysis of different cogeneration and trigeneration systems based on carbon dioxide vapor compression refrigeration systems. Applied Thermal Engineering, 2020, 164, 114503.	6.0	19
10	Dynamic simulation and techno-economic analysis of a concentrated solar power (CSP) plant hybridized with both thermal energy storage and natural gas. Journal of Cleaner Production, 2020, 248, 119193.	9.3	74
11	A novel means to flexibly operate a hybrid concentrated solar power plant and improve operation during non-ideal direct normal irradiation conditions. Energy Conversion and Management, 2020, 203, 112275.	9.2	25
12	Wind Resource Assessment and Economic Viability of Conventional and Unconventional Small Wind Turbines: A Case Study of Maryland. Energies, 2020, 13, 5874.	3.1	5
13	Dynamic optimization and economic evaluation of flexible heat integration in a hybrid concentrated solar power plant. Applied Energy, 2020, 276, 115513.	10.1	22
14	Development of high concentration photovoltaics (HCPV) power plants in the US Southwest: Economic assessment and sensitivity analysis. Sustainable Energy Technologies and Assessments, 2020, 42, 100873.	2.7	2
15	Design and analysis of a dual-receiver direct steam generator solar power tower plant with a flexible heliostat field. Sustainable Energy Technologies and Assessments, 2020, 39, 100698.	2.7	5
16	Solving the duck curve in a smart grid environment using a non-cooperative game theory and dynamic pricing profiles. Energy Conversion and Management, 2020, 220, 113102.	9.2	55
17	A novel triple power cycle featuring a gas turbine cycle with supercritical carbon dioxide and organic Rankine cycles: Thermoeconomic analysis and optimization. Energy Conversion and Management, 2020, 220, 113123.	9.2	41
18	Novel hybrid solar tower-gas turbine combined power cycles using supercritical carbon dioxide bottoming cycles. Applied Thermal Engineering, 2020, 178, 115588.	6.0	40

#	Article	IF	CITATIONS
19	Thermo-economic assessment and optimization of a hybrid triple effect absorption chiller and compressor. Sustainable Energy Technologies and Assessments, 2020, 38, 100652.	2.7	7
20	Hybrid systems based on gas turbine combined cycle for trigeneration of power, cooling, and freshwater: A comparative techno-economic assessment. Sustainable Energy Technologies and Assessments, 2020, 37, 100632.	2.7	22
21	A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective. Applied Energy, 2020, 268, 114940.	10.1	59
22	Economic and environmental impacts of a non-traditional combined heat and power system for a discrete manufacturing facility. Journal of Cleaner Production, 2020, 265, 121816.	9.3	6
23	Hybrid concentrated solar power (CSP)-desalination systems: A review. Desalination, 2019, 468, 114083.	8.2	83
24	Thermo-economic analysis of a novel hybrid multigeneration system based on an integrated triple effect refrigeration system for production of power and refrigeration. Journal of Cleaner Production, 2019, 238, 117912.	9.3	21
25	A novel hybrid dual-temperature absorption refrigeration system: Thermodynamic, economic, and environmental analysis. Journal of Cleaner Production, 2019, 233, 1075-1087.	9.3	21
26	The potential and deployment viability of concentrated solar power (CSP) in Iran. Energy Strategy Reviews, 2019, 24, 358-369.	7. 3	38
27	Thermoeconomic analysis of multi-stage recuperative Brayton power cycles: Part I- hybridization with a solar power tower system. Energy Conversion and Management, 2019, 185, 898-919.	9.2	37
28	Thermoeconomic analysis of multi-stage recuperative Brayton cycles: Part II – Waste energy recovery using CO2 and organic Rankine power cycles. Energy Conversion and Management, 2019, 185, 920-934.	9.2	32
29	A thermo-economic analysis of a combined cooling system for air conditioning and low to medium temperature refrigeration. Journal of Cleaner Production, 2019, 206, 580-597.	9.3	36
30	Thermo-economic analysis and optimization of heliostat fields using AINEH code: Analysis of implementation of non-equal heliostats (AINEH). Renewable Energy, 2019, 135, 920-935.	8.9	19
31	A review of unconventional bottoming cycles for waste heat recovery: Part I – Analysis, design, and optimization. Energy Conversion and Management, 2019, 198, 110905.	9.2	38
32	A review of unconventional bottoming cycles for waste heat recovery: Part II – Applications. Energy Conversion and Management, 2019, 180, 559-583.	9.2	65
33	Thermodynamic analysis of hybrid cycles based on a regenerative steam Rankine cycle for cogeneration and trigeneration. Energy Conversion and Management, 2018, 158, 460-475.	9.2	43
34	Study of inter-correlations of solar radiation, wind speed and precipitation under the influence of El Niño Southern Oscillation (ENSO) in California. Renewable Energy, 2018, 120, 190-200.	8.9	39
35	Association of direct normal irradiance with El Ni $ ilde{A}$ ±0 Southern Oscillation and its consequence on concentrated solar power production in the US Southwest. Applied Energy, 2018, 212, 1126-1137.	10.1	9
36	An efficient integrated trigeneration system for the production of dual temperature cooling and fresh water: Thermoeconomic analysis and optimization. Applied Thermal Engineering, 2018, 145, 652-666.	6.0	13

#	Article	IF	Citations
37	Economic feasibility of developing grid-connected photovoltaic plants in the southern coast of Iran. Energy, 2018, 156, 17-31.	8.8	55
38	Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 2018, 172, 619-644.	9.2	20
39	Use of Birnbaum-Saunders distribution for estimating wind speed and wind power probability distributions: A review. Energy Conversion and Management, 2017, 143, 109-122.	9.2	80
40	Techno-Economic Assessment of Utilizing Wind Energy for Hydrogen Production Through Electrolysis. , 2017, , .		4
41	Simulation and Characterization of a Hybrid Concentrated Solar Tower System for Co-Generation of Power and Fresh Water., 2017,,.		3
42	Predicting the reference evapotranspiration based on tensor decomposition. Theoretical and Applied Climatology, 2017, 130, 1099-1109.	2.8	8
43	A combined method to estimate wind speed distribution based on integrating the support vector machine with firefly algorithm. Environmental Progress and Sustainable Energy, 2016, 35, 867-875.	2.3	28
44	Evaluating the suitability of wind speed probability distribution models: A case of study of east and southeast parts of Iran. Energy Conversion and Management, 2016, 119, 101-108.	9.2	103
45	Investigation of wind resources in Timimoun region, Algeria. Wind Engineering, 2016, 40, 250-260.	1.9	14
46	Prediction of horizontal diffuse solar radiation using clearness index based empirical models; A case study. International Journal of Hydrogen Energy, 2016, 41, 21888-21898.	7.1	50
47	Identifying the most significant input parameters for predicting global solar radiation using an ANFIS selection procedure. Renewable and Sustainable Energy Reviews, 2016, 63, 423-434.	16.4	75
48	Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature. Computers and Electronics in Agriculture, 2016, 124, 150-160.	7.7	89
49	Hybrid auto-regressive neural network model for estimating global solar radiation in Bandar Abbas, Iran. Environmental Earth Sciences, 2016, 75, 1.	2.7	18
50	Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran. Renewable and Sustainable Energy Reviews, 2016, 53, 1570-1579.	16.4	63
51	Evaluating the wind energy potential for hydrogen production: A case study. International Journal of Hydrogen Energy, 2016, 41, 6200-6210.	7.1	89
52	Influence of introducing various meteorological parameters to the Angström–Prescott model for estimation of global solar radiation. Environmental Earth Sciences, 2016, 75, 1.	2.7	11
53	Assessing the proficiency of adaptive neuro-fuzzy system to estimate wind power density: Case study of Aligoodarz, Iran. Renewable and Sustainable Energy Reviews, 2016, 59, 429-435.	16.4	12
54	Application and economic viability of wind turbine installation in Lutak, Iran. Environmental Earth Sciences, 2016, 75, 1.	2.7	8

#	Article	IF	Citations
55	Assessing the suitability of hybridizing the Cuckoo optimization algorithm with ANN and ANFIS techniques to predict daily evaporation. Environmental Earth Sciences, 2016, 75, 1.	2.7	29
56	Evaluation of installing photovoltaic plants using a hybrid approach for Khuzestan province, Iran. Renewable and Sustainable Energy Reviews, 2016, 60, 60-74.	16.4	46
57	A hybrid computational intelligence method for predicting dew point temperature. Environmental Earth Sciences, 2016, 75, 1.	2.7	19
58	Prediction of Daily Dewpoint Temperature Using a Model Combining the Support Vector Machine with Firefly Algorithm. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, 04016013.	1.0	25
59	Using ANFIS for selection of more relevant parameters to predict dew point temperature. Applied Thermal Engineering, 2016, 96, 311-319.	6.0	43
60	Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model. Renewable and Sustainable Energy Reviews, 2016, 56, 428-435.	16.4	94
61	Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 2016, 108, 322-335.	9.2	229
62	Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models. Renewable and Sustainable Energy Reviews, 2016, 53, 338-362.	16.4	56
63	Predicting the wind power density based upon extreme learningÂmachine. Energy, 2015, 86, 232-239.	8.8	73
64	A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation. Energy Conversion and Management, 2015, 92, 162-171.	9.2	227
65	Wind wake influence estimation on energy production of wind farm by adaptive neuro-fuzzy methodology. Energy, 2015, 80, 361-372.	8.8	36
66	Support vector regression based prediction of global solar radiation on a horizontal surface. Energy Conversion and Management, 2015, 91, 433-441.	9.2	173
67	Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year. Energy Conversion and Management, 2015, 93, 406-413.	9.2	103
68	A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities. Renewable and Sustainable Energy Reviews, 2015, 47, 504-518.	16.4	21
69	A support vector machine–firefly algorithm-based model for global solar radiation prediction. Solar Energy, 2015, 115, 632-644.	6.1	295
70	Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 134, 109-117.	1.6	104
71	Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture, 2015, 117, 214-225.	7.7	102
72	A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renewable and Sustainable Energy Reviews, 2015, 52, 1031-1042.	16.4	112

#	Article	IF	CITATIONS
73	Feasibility of installing wind turbines for electricity generation in Jarandagh, Iran. , 2015, , .		1
74	Electricity Generation and Energy Cost Estimation of Large-Scale Wind Turbines in Jarandagh, Iran. Journal of Energy, 2014, 2014, 1-8.	3.2	35
75	Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran. Energy, 2014, 67, 117-128.	8.8	58
76	Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran. Energy, 2014, 69, 571-577.	8.8	51
77	An analysis of wind energy potential and economic evaluation in Zahedan, Iran. Renewable and Sustainable Energy Reviews, 2014, 30, 641-650.	16.4	147
78	A statistical comparative study to demonstrate the merit of day of the year-based models for estimation of horizontal global solar radiation. Energy Conversion and Management, 2014, 87, 37-47.	9.2	49
79	Economic evaluation for cooling and ventilation of medicine storage warehouses utilizing wind catchers. Renewable and Sustainable Energy Reviews, 2014, 38, 12-19.	16.4	35
80	Economic feasibility of developing wind turbines in Aligoodarz, Iran. Energy Conversion and Management, 2013, 76, 645-653.	9.2	73
81	Using different methods for comprehensive study of wind turbine utilization in Zarrineh, Iran. Energy Conversion and Management, 2013, 65, 463-470.	9.2	109
82	A survey of hybrid water desalination systems driven by renewable energy based components. , 0, 150, 9-37.		1