Karin Shmueli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1206628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Planning of gamma knife radiosurgery (GKR) for brain arteriovenous malformations using triple magnetic resonance angiography (triple-MRA). British Journal of Neurosurgery, 2022, 36, 217-227.	0.8	3
2	Multiâ€echo quantitative susceptibility mapping: how to combine echoes for accuracy and precision at 3 Tesla. Magnetic Resonance in Medicine, 2022, 88, 2101-2116.	3.0	4
3	Quantitative susceptibility mapping of the rat brain after traumatic brain injury. NMR in Biomedicine, 2021, 34, e4438.	2.8	20
4	Phase unwrapping with a rapid opensource minimum spanning tree algorithm (ROMEO). Magnetic Resonance in Medicine, 2021, 85, 2294-2308.	3.0	48
5	Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson's disease. Brain, 2021, 144, 1787-1798.	7.6	44
6	Quantitative susceptibility mapping of carotid arterial tissue ex vivo: Assessing sensitivity to vessel microstructural composition. Magnetic Resonance in Medicine, 2021, 86, 2512-2527.	3.0	5
7	Quantitative MRI susceptibility mapping reveals cortical signatures of changes in iron, calcium and zinc in malformations of cortical development in children with drug-resistant epilepsy. NeuroImage, 2021, 238, 118102.	4.2	11
8	Investigating the effect of flow compensation and quantitative susceptibility mapping method on the accuracy of venous susceptibility measurement. NeuroImage, 2021, 240, 118399.	4.2	13
9	PET/MRI attenuation estimation in the lung: A review of past, present, and potential techniques. Medical Physics, 2020, 47, 790-811.	3.0	19
10	An optimized and highly repeatable MRI acquisition and processing pipeline for quantitative susceptibility mapping in the headâ€andâ€neck region. Magnetic Resonance in Medicine, 2020, 84, 3206-3222.	3.0	33
11	Investigating the accuracy and precision of TEâ€dependent versus multiâ€echo QSM using Laplacianâ€based methods at 3 T. Magnetic Resonance in Medicine, 2020, 84, 3040-3053.	3.0	22
12	Quantitative Susceptibility Mapping. Advances in Magnetic Resonance Technology and Applications, 2020, , 819-838.	0.1	4
13	Investigating the oxygenation of brain arteriovenous malformations using quantitative susceptibility mapping. Neurolmage, 2019, 199, 440-453.	4.2	15
14	Noninvasive quantification of oxygen saturation in the portal and hepatic veins in healthy mice and those with colorectal liver metastases using QSM MRI. Magnetic Resonance in Medicine, 2019, 81, 2666-2675.	3.0	6
15	SEGUE: A Speedy rEgion-Growing Algorithm for Unwrapping Estimated Phase. IEEE Transactions on Medical Imaging, 2019, 38, 1347-1357.	8.9	49
16	Association of bone mineral density and fat fraction with magnetic susceptibility in inflamed trabecular bone. Magnetic Resonance in Medicine, 2019, 81, 3094-3107.	3.0	10
17	The effect of low resolution and coverage on the accuracy of susceptibility mapping. Magnetic Resonance in Medicine, 2019, 81, 1833-1848.	3.0	53
18	PROâ€QUEST: a rapid assessment method based on progressive saturation for quantifying exchange rates using saturation times in CEST. Magnetic Resonance in Medicine, 2018, 80, 1638-1654.	3.0	9

KARIN SHMUELI

#	Article	IF	CITATIONS
19	Quantitative susceptibility mapping of articular cartilage: Ex vivo findings at multiple orientations and following different degradation treatments. Magnetic Resonance in Medicine, 2018, 80, 2702-2716.	3.0	20
20	Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge. Magnetic Resonance in Medicine, 2018, 79, 1661-1673.	3.0	151
21	Brain iron in sickle cell disease?. Blood, 2018, 132, 1550-1552.	1.4	3
22	Neuroimaging in patients with sickle cell anemia: capacity building in Africa. Blood Advances, 2018, 2, 26-29.	5.2	3
23	Experimental Models of Brain Disease: MRI Contrast Mechanisms for the Assessment of Pathophysiological Status. , 2018, , 63-92.		0
24	Investigating lipids as a source of chemical exchangeâ€induced MRI frequency shifts. NMR in Biomedicine, 2017, 30, e3525.	2.8	10
25	Tissue magnetic susceptibility mapping as a marker of tau pathology in Alzheimer's disease. NeuroImage, 2017, 159, 334-345.	4.2	45
26	Experimental Models of Brain Disease: MRI Contrast Mechanisms for the Assessment of Pathophysiological Status. , 2017, , 1-30.		0
27	The contribution of myelin to magnetic susceptibility-weighted contrasts in high-field MRI of the brain. NeuroImage, 2012, 59, 3967-3975.	4.2	186
28	Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. European Radiology, 2011, 21, 130-136.	4.5	80
29	The contribution of chemical exchange to MRI frequency shifts in brain tissue. Magnetic Resonance in Medicine, 2011, 65, 35-43.	3.0	71
30	Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5130-5135.	7.1	238
31	Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3834-3839.	7.1	377
32	Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magnetic Resonance in Medicine, 2009, 62, 1510-1522.	3.0	460
33	Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study. Magnetic Resonance Imaging, 2009, 27, 1019-1029.	1.8	213
34	Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neurolmage, 2009, 44, 1259-1266.	4.2	266
35	Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. NeuroImage, 2007, 38, 306-320.	4.2	508
36	Design, construction and evaluation of an anthropomorphic head phantom with realistic susceptibility artifacts. Journal of Magnetic Resonance Imaging, 2007, 26, 202-207.	3.4	28

#	Article	IF	CITATIONS
37	High resolution MRI of the brain at 4.7â€Tesla using fast spin echo imaging. British Journal of Radiology, 2003, 76, 631-637.	2.2	53
38	BOLD contrast modifications due to fat suppression in long TR functional magnetic resonance imaging. Neurolmage, 2001, 13, 31.	4.2	0