
Guillaume Pilot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1206548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and Disruption of a Plant Shaker-like Outward Channel Involved in K+ Release into the Xylem Sap. Cell, 1998, 94, 647-655.	28.9	676
2	Regulation of amino acid metabolic enzymes and transporters in plants. Journal of Experimental Botany, 2014, 65, 5535-5556.	4.8	297
3	Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Molecular Biology, 2003, 51, 773-787.	3.9	221
4	Guard Cell Inward K+ Channel Activity inArabidopsis Involves Expression of the Twin Channel Subunits KAT1 and KAT2. Journal of Biological Chemistry, 2001, 276, 3215-3221.	3.4	217
5	Border Control—A Membrane-Linked Interactome of <i>Arabidopsis</i> . Science, 2014, 344, 711-716.	12.6	213
6	Amino Acid Homeostasis Modulates Salicylic Acid–Associated Redox Status and Defense Responses in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2010, 22, 3845-3863.	6.6	200
7	A Shaker-like K+ Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell, 2000, 12, 837-851.	6.6	196
8	Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes and Development, 2002, 16, 339-350.	5.9	195
9	Amino Acid Export in Plants: A Missing Link in Nitrogen Cycling. Molecular Plant, 2011, 4, 453-463.	8.3	175
10	Overexpression of GLUTAMINE DUMPER1 Leads to Hypersecretion of Glutamine from Hydathodes of Arabidopsis Leaves[W]. Plant Cell, 2004, 16, 1827-1840.	6.6	143
11	A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2. Frontiers in Physiology, 2010, 1, 24.	2.8	131
12	A Shaker-Like K + Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell, 2000, 12, 837.	6.6	120
13	Update on amino acid transporter functions and on possible amino acid sensing mechanisms in plants. Seminars in Cell and Developmental Biology, 2018, 74, 105-113.	5.0	99
14	Five-Group Distribution of the Shaker-like K + Channel Family in Higher Plants. Journal of Molecular Evolution, 2003, 56, 418-434.	1.8	98
15	pH control of the plant outwardly-rectifying potassium channel SKOR. FEBS Letters, 2000, 466, 351-354.	2.8	76
16	UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots. Journal of Experimental Botany, 2016, 67, 6385-6397.	4.8	76
17	Stimulation of Nonselective Amino Acid Export by Glutamine Dumper Proteins. Plant Physiology, 2010, 152, 762-773.	4.8	59
18	Arabidopsis UMAMIT24 and 25 are amino acid exporters involved in seed loading. Journal of Experimental Botany, 2018, 69, 5221-5232.	4.8	43

GUILLAUME PILOT

#	Article	IF	CITATIONS
19	The Ubiquitin E3 Ligase LOSS OF GDU2 Is Required for GLUTAMINE DUMPER1-Induced Amino Acid Secretion in Arabidopsis Â. Plant Physiology, 2012, 158, 1628-1642.	4.8	39
20	Review: Functional linkages between amino acid transporters and plant responses to pathogens. Plant Science, 2018, 277, 79-88.	3.6	31
21	Multifaceted plant responses to circumvent Phe hyperaccumulation by downregulation of flux through the shikimate pathway and by vacuolar Phe sequestration. Plant Journal, 2017, 92, 939-950.	5.7	24
22	A laboratory-scale model cocoa fermentation using dried, unfermented beans and artificial pulp can simulate the microbial and chemical changes of on-farm cocoa fermentation. European Food Research and Technology, 2019, 245, 511-519.	3.3	23
23	Testing the efficiency of plant artificial microRNAs by transient expression in Nicotiana benthamiana reveals additional action at the translational level. Frontiers in Plant Science, 2014, 5, 622.	3.6	20
24	Detailed characterization of the UMAMIT proteins provides insight into their evolution, amino acid transport properties, and role in the plant. Journal of Experimental Botany, 2021, 72, 6400-6417.	4.8	17
25	Altered Amino Acid Metabolism in <i>Glutamine Dumper1</i> Plants. Plant Signaling and Behavior, 2007, 2, 182-184.	2.4	16
26	Inference of Transcription Regulatory Network in Low Phytic Acid Soybean Seeds. Frontiers in Plant Science, 2017, 8, 2029.	3.6	16
27	Functional conservation between mammalian MGRN1 and plant LOG2 ubiquitin ligases. FEBS Letters, 2013, 587, 3400-3405.	2.8	15
28	Amino Acids Are an Ineffective Fertilizer for Dunaliella spp. Growth. Frontiers in Plant Science, 2017, 8, 847.	3.6	15
29	MAMP-elicited changes in amino acid transport activity contribute to restricting bacterial growth. Plant Physiology, 2022, 189, 2315-2331.	4.8	14
30	The plant-specific VIMAG domain ofGlutamine Dumper1is necessary for the function of the protein in arabidopsis. FEBS Letters, 2006, 580, 6961-6966.	2.8	12
31	Suppressor mutations in the Glutamine Dumper1 protein dissociate disturbance in amino acid transport from other characteristics of the Gdu1D phenotype. Frontiers in Plant Science, 2015, 6, 593.	3.6	9
32	Increased Expression of UMAMIT Amino Acid Transporters Results in Activation of Salicylic Acid Dependent Stress Response. Frontiers in Plant Science, 2020, 11, 606386.	3.6	9
33	Control of Amino Acid Homeostasis by a Ubiquitin Ligase-Coactivator Protein Complex. Journal of Biological Chemistry, 2017, 292, 3827-3840.	3.4	7
34	Corrigendum to "The plant-specific VIMAG domain ofGlutamine Dumper1is necessary for the function of the protein in arabidopsis―[FEBS Lett. 580 (2006) 6961-6966]. FEBS Letters, 2007, 581, 1248-1249.	2.8	3
35	Mining for Meaning: Visualization Approaches to Deciphering <i>Arabidopsis </i> Stress Responses in Roots and Shoots. OMICS A Journal of Integrative Biology, 2012, 16, 208-228.	2.0	3
36	Analysis of amino acid uptake and translocation in <i>Arabidopsis</i> with a lowâ€cost hydroponic system. Journal of Plant Nutrition and Soil Science, 2016, 179, 286-293.	1.9	3