Richard N Zare

List of Publications by Citations

Source: https://exaly.com/author-pdf/12064228/richard-n-zare-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

280 87 24,958 147 h-index g-index citations papers 281 26,783 6.9 7.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
280	Protein-inorganic hybrid nanoflowers. <i>Nature Nanotechnology</i> , 2012 , 7, 428-32	28.7	761
279	Comet 81P/Wild 2 under a microscope. Science, 2006, 314, 1711-6	33.3	739
278	Advances in Asphaltene Science and the YenMullins Model. <i>Energy & Description</i> 2012, 26, 3986-4003	4.1	621
277	One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. <i>Nano Letters</i> , 2014 , 14, 5761-5	11.5	585
276	A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 7682-7	11.5	540
275	Microfluidic device for single-cell analysis. <i>Analytical Chemistry</i> , 2003 , 75, 3581-6	7.8	475
274	Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. <i>Science</i> , 2006 , 314, 1720-4	33.3	464
273	Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. <i>Analytical Chemistry</i> , 1988 , 60, 1837-1838	7.8	416
272	Cavity ring-down spectroscopy for quantitative absorption measurements. <i>Journal of Chemical Physics</i> , 1995 , 102, 2708-2717	3.9	373
271	Optical detection of single molecules. <i>Annual Review of Biophysics and Biomolecular Structure</i> , 1997 , 26, 567-96		372
270	Drug release from electric-field-responsive nanoparticles. ACS Nano, 2012, 6, 227-33	16.7	370
269	Counting low-copy number proteins in a single cell. <i>Science</i> , 2007 , 315, 81-4	33.3	328
268	Electrokinetic resolution of amino acid enantiomers with copper(II)-aspartame support electrolyte. <i>Analytical Chemistry</i> , 1987 , 59, 44-49	7.8	315
267	UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers. <i>Science</i> , 1999 , 283, 1135-8	33.3	310
266	Quantitative determination of low molecular weight carboxylic acids by capillary zone electrophoresis/conductivity detection. <i>Analytical Chemistry</i> , 1989 , 61, 766-770	7.8	275
265	Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze. <i>Icarus</i> , 2004 , 168, 344-366	3.8	259
264	Microfluidic platforms for single-cell analysis. <i>Annual Review of Biomedical Engineering</i> , 2010 , 12, 187-2	2012	258

(2002-2000)

263	Microscale Location, Characterization, and Association of Polycyclic Aromatic Hydrocarbons on Harbor Sediment Particles. <i>Environmental Science & Environmental Science & Envi</i>	10.3	250
262	Gold nanoparticles as a colorimetric sensor for protein conformational changes. <i>Chemistry and Biology</i> , 2005 , 12, 323-8		222
261	Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a copper microelectrode. <i>Analytical Chemistry</i> , 1993 , 65, 476-481	7.8	221
260	Chemical transformations in individual ultrasmall biomimetic containers. <i>Science</i> , 1999 , 283, 1892-5	33.3	218
259	Reaction of Cl with vibrationally excited CH4 and CHD3: State-to-state differential cross sections and steric effects for the HCl product. <i>Journal of Chemical Physics</i> , 1995 , 103, 7313-7335	3.9	211
258	Chemical cytometry on a picoliter-scale integrated microfluidic chip. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 12809-13	11.5	210
257	Analysis of factors causing peak broadening in capillary zone electrophoresis. <i>Journal of Chromatography A</i> , 1989 , 480, 95-110	4.5	206
256	Evidence for Island Structures as the Dominant Architecture of Asphaltenes. <i>Energy & amp; Fuels</i> , 2011 , 25, 1597-1604	4.1	199
255	Capillary electrochromatography: operating characteristics and enantiomeric separations. <i>Journal of Chromatography A</i> , 1996 , 723, 145-156	4.5	194
254	Capillary Electrochromatography: Analysis of Polycyclic Aromatic Hydrocarbons. <i>Analytical Chemistry</i> , 1995 , 67, 2026-2029	7.8	193
253	Bond-specific chemistry: OD:OH product ratios for the reactions H+HOD(100) and H+HOD(001). Journal of Chemical Physics, 1991 , 95, 8647-8648	3.9	193
252	Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath. <i>Analytical Chemistry</i> , 2002 , 74, 2003-7	7.8	189
251	Bias in quantitative capillary zone electrophoresis caused by electrokinetic sample injection. <i>Analytical Chemistry</i> , 1988 , 60, 375-377	7.8	187
250	Surface plasmon resonance imaging using a high numerical aperture microscope objective. <i>Analytical Chemistry</i> , 2007 , 79, 2979-83	7.8	183
249	End-column detection for capillary zone electrophoresis. <i>Analytical Chemistry</i> , 1991 , 63, 189-92	7.8	180
248	Optimizing Chemical Reactions with Deep Reinforcement Learning. ACS Central Science, 2017, 3, 1337	-13 4 48	179
247	Beyond State-to-State Differential Cross Sections: Determination of Product Polarization in Photoinitiated Bimolecular Reactions. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 7591-7603		177
246	Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction. <i>Nature</i> , 2002 , 416, 67-70	50.4	172

Selection rules for the photoionization of diatomic molecules. *Journal of Chemical Physics*, **1990**, 93, 303**3**:3038172

244	On-column conductivity detector for capillary zone electrophoresis. <i>Analytical Chemistry</i> , 1987 , 59, 274	7 <i>=</i> 28/49	172
243	Preparation and characterization of monolithic porous capillary columns loaded with chromatographic particles. <i>Analytical Chemistry</i> , 1998 , 70, 5103-7	7.8	167
242	Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. <i>Lab on A Chip</i> , 2005 , 5, 1393-8	7.2	163
241	Radiative lifetimes of the alkaline earth monohalides. <i>Journal of Chemical Physics</i> , 1974 , 60, 2330-2339	3.9	161
240	Effect of atomic reagent approach geometry on reactivity: Reactions of aligned Ca(1P1) with HCl, Cl2, and CCl4. <i>Journal of Chemical Physics</i> , 1982 , 77, 2416-2429	3.9	160
239	Two-step laser mass spectrometry of asphaltenes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7216-7	16.4	159
238	Dissociation of H2+ by Electron Impact: Calculated Angular Distribution. <i>Journal of Chemical Physics</i> , 1967 , 47, 204-215	3.9	158
237	Scattering resonances in the simplest chemical reaction. <i>Annual Review of Physical Chemistry</i> , 2002 , 53, 67-99	15.7	156
236	Determination of Internal-State Distributions of Surface Scattered Molecules: Incomplete Rotational Accommodation of NO on Ag(111). <i>Physical Review Letters</i> , 1981 , 46, 831-834	7.4	154
235	Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 243	6-47	148
234	Interdisciplinary Research: From Belief to Reality. <i>Science</i> , 1999 , 283, 642-643	33.3	146
233	Real-Time Detection of Single Molecules in Solution by Confocal Fluorescence Microscopy. <i>Analytical Chemistry</i> , 1995 , 67, 2849-2857	7.8	146
232	Acceleration of reaction in charged microdroplets. <i>Quarterly Reviews of Biophysics</i> , 2015 , 48, 437-44	7	145
231	MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 6539-44	11.5	139
230	Microdroplet fusion mass spectrometry for fast reaction kinetics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 3898-903	11.5	138
229	State-to-state differential cross sections for the reaction Cl (2P32) + CH4 ($B = 1$, $J = 1$) -> HCl ($V? = 1$, $J?$) + CH3. Chemical Physics Letters, 1993 , 212, 163-171	2.5	136
228	Structure and dynamics of the excited CHEhromophore in (CF3)3CH. <i>Journal of Chemical Physics</i> , 1985 , 82, 1186-1194	3.9	136

227	Effect of reagent orientation and rotation upon product state distribution in the reaction Sr+HF (v=1,J) ->SrF(v?, J?) +H. <i>Journal of Chemical Physics</i> , 1978 , 69, 5199-5201	3.9	135	
226	Picturing the Transition-State Region and Understanding Vibrational Enhancement for the Cl + CH4 -> HCl + CH3 Reaction. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 7938-7947		133	
225	State-to-state reaction rates: Ba+HF(v=0,1) -> BaF(v=012)+H. Journal of Chemical Physics, 1976 , 64, 177	74-31 3 83	129	
224	Effect of reagent vibration on the hydrogen atom + water-d reaction: an example of bond-specific chemistry. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 2194-2203		125	
223	Rectangular capillaries for capillary zone electrophoresis. <i>Analytical Chemistry</i> , 1990 , 62, 2149-2152	7.8	125	
222	Microfluidic device for immunoassays based on surface plasmon resonance imaging. <i>Lab on A Chip</i> , 2008 , 8, 694-700	7.2	123	
221	Gradient elution in capillary electrochromatography. Analytical Chemistry, 1996, 68, 2726-30	7.8	123	
220	Online Time-of-Flight Mass Spectrometric Analysis of Peptides Separated by Capillary Electrophoresis. <i>Analytical Chemistry</i> , 1994 , 66, 3696-3701	7.8	122	
219	Direct inelastic scattering of N2 from Ag(111). I. Rotational populations and alignment. <i>Journal of Chemical Physics</i> , 1988 , 89, 2558-2571	3.9	122	
218	Packaging and delivering enzymes by amorphous metal-organic frameworks. <i>Nature Communications</i> , 2019 , 10, 5165	17.4	119	
217	Coating of poly(dimethylsiloxane) with n-dodecyl-beta-D-maltoside to minimize nonspecific protein adsorption. <i>Lab on A Chip</i> , 2005 , 5, 1005-7	7.2	118	
216	Syntheses of Isoquinoline and Substituted Quinolines in Charged Microdroplets. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14795-9	16.4	117	
215	Fluorescence detection in capillary zone electrophoresis using a charge-coupled device with time-delayed integration. <i>Analytical Chemistry</i> , 1991 , 63, 496-502	7.8	117	
214	Molecular Level-Crossing Spectroscopy. <i>Journal of Chemical Physics</i> , 1966 , 45, 4510-4518	3.9	115	
213	Asphaltene Molecular-Mass Distribution Determined by Two-Step Laser Mass Spectrometry Energy & Energy	4.1	113	
212	High-resolution angle- and energy-resolved photoelectron spectroscopy of NO: Partial wave decomposition of the ionization continuum. <i>Journal of Chemical Physics</i> , 1989 , 91, 2216-2234	3.9	112	
211	Protocol for resolving protein mixtures in capillary zone electrophoresis. <i>Analytical Chemistry</i> , 1991 , 63, 69-72	7.8	112	
210	Superthermal widths of the collision energy distributions in hot atom reactions. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 8205-8207		110	

209	Particle sorting using a porous membrane in a microfluidic device. <i>Lab on A Chip</i> , 2011 , 11, 238-45	7.2	108
208	Rapid detection of phenol using a membrane containing laccase nanoflowers. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 2358-60	4.5	107
207	Core extraction for measuring state-to-state differential cross sections of bimolecular reactions. Journal of Chemical Physics, 1995 , 103, 7299-7312	3.9	105
206	State-to-state differential cross sections from photoinitiated bulb reactions. <i>Chemical Physics Letters</i> , 1993 , 212, 155-162	2.5	102
205	Abiotic production of sugar phosphates and uridine ribonucleoside in aqueous microdroplets. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12396-12406	0 ^{11.5}	101
204	Determination of methotrexate and its major metabolite, 7-hydroxymethotrexate, using capillary zone electrophoresis and laser-induced fluorescence detection. <i>Biomedical Applications</i> , 1988 , 426, 129	-40	100
203	Alteration of the lipid profile in lymphomas induced by MYC overexpression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10450-5	11.5	99
202	Effect of vibrational excitation on the molecular beam reactions of Ca and Sr with HF and DF. <i>Journal of Chemical Physics</i> , 1978 , 68, 3360-3365	3.9	95
201	A search for mode-selective chemistry: The unimolecular dissociation of t-butyl hydroperoxide induced by vibrational overtone excitation. <i>Journal of Chemical Physics</i> , 1982 , 77, 4447-4458	3.9	94
200	Biased Diffusion, Optical Trapping, and Manipulation of Single Molecules in Solution. <i>Journal of the American Chemical Society</i> , 1996 , 118, 6512-6513	16.4	93
199	Can all bulk-phase reactions be accelerated in microdroplets?. <i>Analyst, The</i> , 2017 , 142, 1399-1402	5	92
198	Comparison of experimental and theoretical integral cross sections for D+H2(v=1, j=1)->HD(v目1, j⊪H. <i>Journal of Chemical Physics</i> , 1991 , 95, 1648-1662	3.9	92
197	Correlation Effects in Complex Spectra. II. Transition Probabilities for the Magnesium Isoelectronic Sequence. <i>Journal of Chemical Physics</i> , 1967 , 47, 3561-3572	3.9	92
196	Side Group Addition to the Polycyclic Aromatic Hydrocarbon Coronene by Ultraviolet Photolysis in Cosmic Ice Analogs. <i>Astrophysical Journal</i> , 2002 , 576, 1115-1120	4.7	90
195	Laser-Based Mass Spectrometric Assessment of Asphaltene Molecular Weight, Molecular Architecture, and Nanoaggregate Number. <i>Energy & Description</i> 29, 2833-2842	4.1	88
194	On-line connector for microcolumns: application to the on-column o-phthaldialdehyde derivatization of amino acids separated by capillary zone electrophoresis. <i>Analytical Chemistry</i> , 1988 , 60, 2625-9	7.8	88
193	Probing single secretory vesicles with capillary electrophoresis. <i>Science</i> , 1998 , 279, 1190-3	33.3	86
192	Ultrasensitive fluorescence detection of polycyclic aromatic hydrocarbons in capillary electrophoresis. <i>Analytical Chemistry</i> , 1993 , 65, 3571-3575	7.8	86

191	Spectroscopy of K2 Using Laser-Induced Fluorescence. <i>Journal of Chemical Physics</i> , 1968 , 49, 4264-4268	3.9	86
190	Comparison of reagent stretch vs bend excitation in the hydrogen atom + water-d2 reaction: an example of mode-selective chemistry. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 2204-2208		84
189	Effect of atomic reagent approach geometry on electronic state branching: The Ca(1P1) + HCl reaction. <i>Journal of Chemical Physics</i> , 1981 , 75, 3636-3637	3.9	8o
188	Vibrational control in the reaction of methane with atomic chlorine. <i>Journal of the American Chemical Society</i> , 2001 , 123, 12714-5	16.4	79
187	Advances in Capillary Electrochromatography: Rapid and High-Efficiency Separations of PAHs. <i>Analytical Chemistry</i> , 1998 , 70, 4787-4792	7.8	79
186	Determination of metal ion complexes in electroplating solutions using capillary zone electrophoresis with uv detection. <i>Journal of Chromatography A</i> , 1989 , 480, 427-431	4.5	79
185	Enhanced proteolytic activity of covalently bound enzymes in photopolymerized sol gel. <i>Analytical Chemistry</i> , 2005 , 77, 4604-10	7.8	78
184	Protein-polymer hybrid nanoparticles for drug delivery. <i>Small</i> , 2012 , 8, 3573-8	11	77
183	Macroporous photopolymer frits for capillary electrochromatography. <i>Analytical Chemistry</i> , 2000 , 72, 1224-7	7.8	77
182	Dynamics for the Cl+C2H6->HCl+C2H5 reaction examined through state-specific angular distributions. <i>Journal of Chemical Physics</i> , 1996 , 105, 7550-7559	3.9	76
181	Measurement of product alignment in beamgas chemiluminescent reactions. <i>Journal of Chemical Physics</i> , 1981 , 75, 2222-2230	3.9	76
180	PAH sorption mechanism and partitioning behavior in lampblack-impacted soils from former oil-gas plant sites. <i>Environmental Science & Environmental &</i>	10.3	75
179	Reaction dynamics of atomic chlorine with methane: Importance of methane bending and torsional excitation in controlling reactivity. <i>Journal of Chemical Physics</i> , 1998 , 109, 9719-9727	3.9	75
178	Manipulating the biochemical nanoenvironment around single molecules contained within vesicles. <i>Chemical Physics</i> , 1999 , 247, 133-139	2.3	75
177	Flow injection analysis in a microfluidic format. <i>Analytical Chemistry</i> , 2003 , 75, 967-72	7.8	74
176	Enantiomeric separation of amino acids and nonprotein amino acids using a particle-loaded monolithic column. <i>Electrophoresis</i> , 2000 , 21, 3145-51	3.6	74
175	Comparing the dynamical effects of symmetric and antisymmetric stretch excitation of methane in the Cl+CH4 reaction. <i>Journal of Chemical Physics</i> , 2004 , 120, 5096-103	3.9	73
174	Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 4300-4305	11.5	72

173	Laser-Based Mass Spectrometric Determination of Aggregation Numbers for Petroleum- and Coal-Derived Asphaltenes. <i>Energy & Description</i> 28, 475-482	4.1	72
172	Adsorption of Crystal Violet to the Silica Water Interface Monitored by Evanescent Wave Cavity Ring-Down Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 7070-7075	3.4	72
171	Cavity ring-down spectroscopy as a detector for liquid chromatography. <i>Analytical Chemistry</i> , 2003 , 75, 3086-91	7.8	71
170	Photon counting histogram: one-photon excitation. <i>ChemPhysChem</i> , 2004 , 5, 1523-31	3.2	71
169	Hadamard Transform Time-of-Flight Mass Spectrometry. <i>Analytical Chemistry</i> , 1998 , 70, 3735-3741	7.8	71
168	Quantitative determination of H2, HD, and D2 internal-state distributions by (2+1) resonance-enhanced multiphoton ionization. <i>Journal of Chemical Physics</i> , 1991 , 95, 214-225	3.9	71
167	Complete description of two-photon (1+1Dionization of NO deduced from rotationally resolved photoelectron angular distributions. <i>Journal of Chemical Physics</i> , 1991 , 95, 1757-1767	3.9	71
166	Direct monitoring of absorption in solution by cavity ring-down spectroscopy. <i>Analytical Chemistry</i> , 2002 , 74, 1741-3	7.8	70
165	Improved end-column conductivity detector for capillary zone electrophoresis. <i>Analytical Chemistry</i> , 1991 , 63, 2193-2196	7.8	70
164	Use of an on-column frit in capillary zone electrophoresis: sample collection. <i>Analytical Chemistry</i> , 1990 , 62, 443-446	7.8	69
163	Depolarization of optically prepared molecules by two randomly oriented spins. <i>Molecular Physics</i> , 1985 , 55, 1-9	1.7	69
162	Side Group Addition to the Polycyclic Aromatic Hydrocarbon Coronene by Proton Irradiation in Cosmic Ice Analogs. <i>Astrophysical Journal</i> , 2003 , 582, L25-L29	4.7	68
161	Automated capillary electrochromatography: reliability and reproducibility studies. <i>Journal of Chromatography A</i> , 1996 , 725, 361-6	4.5	68
160	Chemiluminescence detection in capillary electrophoresis. <i>Journal of High Resolution Chromatography</i> , 1992 , 15, 133-135		67
159	Complete description of molecular photoionization from circular dichroism of rotationally resolved photoelectron angular distributions. <i>Physical Review Letters</i> , 1992 , 68, 3527-3530	7.4	66
158	Effect of reagent rotation on product energy disposal in the light atom transfer reaction O(3P)+HCl(v=2,J=1,6,9)->OH(v[N])+Cl(2P). <i>Journal of Chemical Physics</i> , 1991 , 94, 2704-2712	3.9	65
157	A reinterpretation of the mechanism of the simplest reaction at an sp3-hybridized carbon atom: H + CD4> CD3 + HD. <i>Journal of the American Chemical Society</i> , 2005 , 127, 11898-9	16.4	63
156	Measurement of relative state-to-state rate constants for the reaction D+H2(v, j)->HD(v∏j] H. Journal of Chemical Physics, 1992 , 97, 7323-7341	3.9	63

155	Bond and mode selectivity in the reaction of atomic chlorine with vibrationally excited CH2D2. Journal of Chemical Physics, 2004 , 120, 791-9	3.9	62	
154	Effects of C-H stretch excitation on the H+CH4 reaction. <i>Journal of Chemical Physics</i> , 2005 , 123, 134301	3.9	62	
153	Molecular-orbital decomposition of the ionization continuum for a diatomic molecule by angle- and energy-resolved photoelectron spectroscopy. I. Formalism. <i>Journal of Chemical Physics</i> , 1996 , 104, 4554	- 4 567	62	
152	Polypyrrole nanoparticles for tunable, pH-sensitive and sustained drug release. <i>Nanoscale</i> , 2015 , 7, 949	7 /5/ 04	61	
151	Is the simplest chemical reaction really so simple?. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 15-20	11.5	61	
150	Rotationally state-selected HBR+: Preparation and characterization. <i>Chemical Physics Letters</i> , 1989 , 159, 399-405	2.5	61	
149	Subfemtomole quantitation of molecular adsorbates by two-step laser mass spectrometry. <i>Journal of the American Chemical Society</i> , 1987 , 109, 2842-2843	16.4	61	
148	Disagreement between theory and experiment in the simplest chemical reaction: collision energy dependent rotational distributions for H + D2> HD(nu' = 3,j') + D. <i>Journal of Chemical Physics</i> , 2004 , 120, 3244-54	3.9	60	
147	The H+D2 reaction: Quantum-state distributions at collision energies of 1.3 and 0.55 eV. <i>Journal of Chemical Physics</i> , 1989 , 91, 7514-7529	3.9	59	
146	Comparing Laser Desorption/Laser Ionization Mass Spectra of Asphaltenes and Model Compounds. <i>Energy & Energy &</i>	4.1	58	
145	Functional immobilization of a ligand-activated G-protein-coupled receptor. ChemBioChem, 2002, 3, 993	3-3 8	57	
144	Correlation Effects in Complex Spectra. I. Term Energies for the Magnesium Isoelectronic Sequence. <i>Journal of Chemical Physics</i> , 1966 , 45, 1966-1978	3.9	57	
143	Temperature-responsive enzyme-polymer nanoconjugates with enhanced catalytic activities in organic media. <i>Chemical Communications</i> , 2013 , 49, 6090-2	5.8	56	
142	Differential cross section polarization moments: Location of the D-atom transfer in the transition-state region for the reactions Cl+C2D6->DCl(v?=0,J?=1)+C2D5 and Cl+CD4->DCl(v?=0,J?=1)+CD3. <i>Journal of Chemical Physics</i> , 1997 , 107, 9392-9405	3.9	56	
141	Functional protein-organic/inorganic hybrid nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013 , 5, 320-8	9.2	54	
140	Photopolymerized sol-gel frits for packed columns in capillary electrochromatography. <i>Journal of Chromatography A</i> , 2001 , 924, 187-95	4.5	54	
139	Channel-specific angular distributions of HCl and CH3 products from the reaction of atomic chlorine with stretch-excited methane. <i>Journal of Chemical Physics</i> , 2002 , 117, 3232-3242	3.9	54	
138	The H+para-H2 reaction: Influence of dynamical resonances on H2 (v目1, j目1 and 3) integral cross sections. <i>Journal of Chemical Physics</i> , 1991 , 94, 1069-1080	3.9	53	

137	The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. <i>Cell Metabolism</i> , 2019 , 30, 556-572.e5	24.6	52
136	D+H2(v=1, J=1): Rovibronic state to rovibronic state reaction dynamics. <i>Journal of Chemical Physics</i> , 1990 , 92, 2107-2109	3.9	52
135	Measurement of the state-specific differential cross section for the H+D2->HD(v?=4, J?=3)+D reaction at a collision energy of 2.2 eV. <i>Journal of Chemical Physics</i> , 1995 , 103, 5157-5160	3.9	51
134	Electrically controlled release of insulin using polypyrrole nanoparticles. <i>Nanoscale</i> , 2017 , 9, 143-149	7.7	50
133	Comparing reactions of H and Cl with C-H stretch-excited CHD3. <i>Journal of Chemical Physics</i> , 2006 , 124, 034311	3.9	50
132	H + CD4 abstraction reaction dynamics: excitation function and angular distributions. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 677-86	2.8	50
131	Effect of preparatory conditions on the performance of photopolymerized sol-gel monoliths for capillary electrochromatography. <i>Journal of Chromatography A</i> , 2002 , 961, 45-51	4.5	50
130	Personal Information from Latent Fingerprints Using Desorption Electrospray Ionization Mass Spectrometry and Machine Learning. <i>Analytical Chemistry</i> , 2017 , 89, 1369-1372	7.8	49
129	Minimization of fragmentation and aggregation by laser desorption laser ionization mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2013 , 24, 1116-22	3.5	49
128	Effects of bending excitation on the reaction of chlorine atoms with methane. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2382-5	16.4	49
127	Deuterium enrichment of polycyclic aromatic hydrocarbons by photochemically induced exchange with deuterium-rich cosmic ices. <i>Astrophysical Journal</i> , 2000 , 538, 691-7	4.7	49
126	Nanoaggregates of Diverse Asphaltenes by Mass Spectrometry and Molecular Dynamics. <i>Energy & Energy Fuels</i> , 2017 , 31, 9140-9151	4.1	48
125	Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2. <i>Meteoritics and Planetary Science</i> , 2010 , 45, 406-433	2.8	48
124	Vibrational excitation through tug-of-war inelastic collisions. <i>Nature</i> , 2008 , 454, 88-91	50.4	48
123	Laser mass spectrometric detection of extraterrestrial aromatic molecules: mini-review and examination of pulsed heating effects. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 18096-101	11.5	48
122	Analysis of biomolecular interactions using a miniaturized surface plasmon resonance sensor. <i>Analytical Chemistry</i> , 2002 , 74, 4570-6	7.8	48
121	Evidence for Scattering Resonances in the H+D2 Reaction. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 2748-2752	16.4	47
120	Application of ion imaging to the atomfholecule exchange reaction: H+HI->H2+I. <i>Journal of Chemical Physics</i> , 1991 , 94, 4672-4675	3.9	47

(2006-1988)

119	Quantitation of Li+ in serum by capillary zone electrophoresis with an on-column conductivity detector. <i>Biomedical Applications</i> , 1988 , 425, 385-90		46	
118	Comparison of the Ca+HF(DF) and Sr+HF(DF) reaction dynamics. <i>Journal of Chemical Physics</i> , 1988 , 89, 6283-6294	3.9	46	
117	Distinguishing malignant from benign microscopic skin lesions using desorption electrospray ionization mass spectrometry imaging. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 6347-6352	11.5	45	
116	Evidence that polycyclic aromatic hydrocarbons in two carbonaceous chondrites predate parent-body formation. <i>Geochimica Et Cosmochimica Acta</i> , 2003 , 67, 1429-1436	5.5	45	
115	Hadamard transform time-of-flight mass spectrometry: a high-speed detector for capillary-format separations. <i>Analytical Chemistry</i> , 2002 , 74, 1611-7	7.8	45	
114	My life with LIF: a personal account of developing laser-induced fluorescence. <i>Annual Review of Analytical Chemistry</i> , 2012 , 5, 1-14	12.5	44	
113	Injection of ultrasmall samples and single molecules into tapered capillaries. <i>Analytical Chemistry</i> , 1997 , 69, 1801-7	7.8	44	
112	Alkylation of polycyclic aromatic hydrocarbons in carbonaceous chondrites. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 1349-1357	5.5	44	
111	Moving beyond traditional UV-visible absorption detection: cavity ring-down spectroscopy for HPLC. <i>Analytical Chemistry</i> , 2005 , 77, 1177-82	7.8	44	
110	Characterization of a Hadamard transform time-of-flight mass spectrometer. <i>Review of Scientific Instruments</i> , 2000 , 71, 1306-1318	1.7	43	
109	Integral rate constant measurements of the reaction H +D2O -> HD(v印)叶OD. <i>Journal of Chemical Physics</i> , 1993 , 98, 4636-4643	3.9	43	
108	Rotational line strengths for the photoionization of diatomic molecules. <i>Journal of Chemical Physics</i> , 1992 , 97, 2891-2899	3.9	43	
107	Laser Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity, and Matrix Effects. <i>Energy & Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity, and Matrix Effects. Energy & Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity, and Matrix Effects. <i>Energy & Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity, and Matrix Effects. Energy & Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity, and Matrix Effects. <i>Energy & Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity, and Matrix Effects. Energy & Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity, and Matrix Effects. <i>Energy & Desorption Single-Photon Ionization Single-Photon Single-Photon Ionization Single-Photon Single-Photon Single-Photon Single-Photon </i></i></i></i>	4.1	42	
106	Perforated membrane method for fabricating three-dimensional polydimethylsiloxane microfluidic devices. <i>Lab on A Chip</i> , 2008 , 8, 1688-94	7.2	42	
105	Dual electrochemical detection of cysteine and cystine in capillary zone electrophoresis. <i>Journal of Chromatography A</i> , 1994 , 680, 263-270	4.5	42	
104	Constant Asphaltene Molecular and Nanoaggregate Mass in a Gravitationally Segregated Reservoir. <i>Energy & Description of the Energy & Energy & Energy & Description of the Energy & Description of the</i>	4.1	41	
103	High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 10928-32	11.5	41	
102	Controlling electroosmotic flow in poly(dimethylsiloxane) separation channels by means of prepolymer additives. <i>Analytical Chemistry</i> , 2006 , 78, 4588-92	7.8	41	

101	Unimolecular decomposition of t-butylhydroperoxide by direct excitation of the 6D O⊞ stretching overtone. <i>Faraday Discussions of the Chemical Society</i> , 1983 , 75, 301-313		41
100	Electroresponsive nanoparticles for drug delivery on demand. <i>Nanoscale</i> , 2016 , 8, 9310-7	7.7	41
99	Direct Observation of Polycyclic Aromatic Hydrocarbons on Geosorbents at the Subparticle Scale. <i>Environmental Science & Environmental Science & Envir</i>	10.3	40
98	Laser-induced chemiluminescence: variation of reaction rates with reagent approach geometry. Journal of the American Chemical Society, 1978, 100, 1323-1324	16.4	40
97	Seemingly anomalous angular distributions in H + DI reactive scattering. <i>Science</i> , 2012 , 336, 1687-90	33.3	39
96	Factors affecting quantitative analysis in laser desorption/laser ionization mass spectrometry. Analytical Chemistry, 2004 , 76, 2430-7	7.8	39
95	Angular Distributions for the Cl + C2H6-> HCl + C2H5Reaction Observed via Multiphoton Ionization of the C2H5Radical. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 2270-2273	2.8	38
94	Determinations of bond energies by time-of-flight single-collision chemiluminescence. <i>Chemical Physics</i> , 1978 , 28, 253-263	2.3	38
93	Observation of flow profiles in electroosmosis in a rectangular capillary. <i>Journal of Chromatography A</i> , 1993 , 632, 201-207	4.5	37
92	Effect of bending and torsional mode excitation on the reaction Cl+CH4>HCl+CH3. <i>Journal of Chemical Physics</i> , 2005 , 122, 84303	3.9	36
91	Measurement of the HD(v?=2,J?=3) product differential cross section for the H+D2 exchange reaction at 1.55⊞0.05 eV using the photoloc technique. <i>Journal of Chemical Physics</i> , 1999 , 111, 1022-103	3 4 .9	36
90	Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing. <i>Antibiotics</i> , 2015 , 4, 455-66	4.9	35
89	Denaturation and renaturation of self-assembled yeast iso-1-cytochrome c on Au. <i>Analytical Chemistry</i> , 2004 , 76, 2112-7	7.8	35
88	Effect of electrolyte and sample concentraton on the relatioship between sensitivity and resolution in capillary zone electrophoresis using conductivity detection. <i>Journal of Chromatography A</i> , 1989 , 480, 285-288	4.5	35
87	Rotational and vibrational effects in the E 1HgX 1Hg two-photon transitions of H2, HD, and D2. <i>Journal of Chemical Physics</i> , 1991 , 95, 205-213	3.9	34
86	Phospholipid biotinylation of polydimethylsiloxane (PDMS) for protein immobilization. <i>Lab on A Chip</i> , 2006 , 6, 369-73	7.2	33
85	Collision energy dependence of the HD(nu' = 2) product rotational distribution of the H + D2 reaction in the range 1.30-1.89 eV. <i>Journal of Chemical Physics</i> , 2004 , 120, 3255-64	3.9	33
84	Comparison of near-threshold reactivity of ground-state and spin-orbit excited chlorine atoms with methane. <i>Journal of Chemical Physics</i> , 2001 , 115, 179-183	3.9	33

83	Semipreparative capillary electrochromatography. <i>Analytical Chemistry</i> , 2001 , 73, 1987-92	7.8	33	
82	Microcolumn sample injection by spontaneous fluid displacement. <i>Journal of Chromatography A</i> , 1994 , 680, 99-107	4.5	33	
81	UV photolysis of quinoline in interstellar ice analogs. <i>Meteoritics and Planetary Science</i> , 2006 , 41, 785-79	96 .8	31	
8o	Electroosmotic flow in a poly(dimethylsiloxane) channel does not depend on percent curing agent. <i>Electrophoresis</i> , 2004 , 25, 1120-4	3.6	31	
79	Forward scattering in the H+D2->HD+D reaction: Comparison between experiment and theoretical predictions. <i>Journal of Chemical Physics</i> , 2001 , 115, 4534-4545	3.9	31	
78	Differential cross sections for H+D2->HD(v?=1, J?=1,5,8)+D at 1.7 eV. <i>Journal of Chemical Physics</i> , 1999 , 111, 1035-1042	3.9	31	
77	Characterization of MYC-induced tumorigenesis by in situ lipid profiling. <i>Analytical Chemistry</i> , 2013 , 85, 4259-62	7.8	30	
76	Determination of differential-cross-section moments from polarization-dependent product velocity distributions of photoinitiated bimolecular reactions. <i>Journal of Chemical Physics</i> , 1997 , 107, 9382-9391	3.9	30	
75	Dynamical effects of reagent vibrational excitation in the Cl + C2H6(B = 1) -> HCl + C2H5 reaction. <i>Chemical Physics Letters</i> , 1997 , 265, 121-128	2.5	30	
74	Molecular-orbital decomposition of the ionization continuum for a diatomic molecule by angle- and energy-resolved photoelectron spectroscopy. II. Ionization continuum of NO. <i>Journal of Chemical Physics</i> , 1996 , 104, 4568-4580	3.9	29	
73	Differential cross sections for H+D2->HD (v?=2, J?=0,3,5)+D at 1.55 eV. <i>Journal of Chemical Physics</i> , 1999 , 111, 2490-2498	3.9	28	
72	Separation of related opiate compounds using capillary electrochromatography. <i>Electrophoresis</i> , 2000 , 21, 737-42	3.6	27	
71	Photoionization dynamics of the NO A 2# state deduced from energy- and angle-resolved photoelectron spectroscopy. <i>Journal of Chemical Physics</i> , 1993 , 99, 6537-6544	3.9	27	
70	Analysis of underivatized amino acids by capillary electrophoresis using constant potential amperometric detection. <i>Electrophoresis</i> , 1995 , 16, 493-7	3.6	27	
69	Comment on "Organics captured from comet 81P/Wild 2 by the Stardust spacecraft". <i>Science</i> , 2007 , 317, 1680; author reply 1680	33.3	25	
68	Evidence for inhomogeneous broadening in vibrational overtone transitions: Formation of 1, 3-cyclohexadiene from cis-1, 3, 5-hexatriene. <i>Journal of Chemical Physics</i> , 1985 , 82, 4791-4801	3.9	24	
67	Vibrationally inelastic H + D2 collisions are forward-scattered. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 18194-9	11.5	22	
66	Evanescent-wave cavity ring-down investigation of polymer/solvent interactions. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 7435-42	3.4	22	

65	Measurement of the cross section for H+D2->HD(v?=3,j?=0)+D as a function of angle and energy. <i>Journal of Chemical Physics</i> , 2003 , 119, 4662-4670	3.9	22
64	Rotationally resolved photoelectron spectra from vibrational autoionization of NO Rydberg levels. <i>Journal of Chemical Physics</i> , 1997 , 106, 2239-2247	3.9	21
63	Use of a mixture of n-dodecyl-beta-D-maltoside and sodium dodecyl sulfate in poly(dimethylsiloxane) microchips to suppress adhesion and promote separation of proteins. <i>Analytical Chemistry</i> , 2007 , 79, 9145-9	7.8	21
62	An evolutionary connection between interstellar ices and IDPs? Clues from mass spectroscopy measurements of laboratory simulations. <i>Advances in Space Research</i> , 2004 , 33, 67-71	2.4	21
61	Determination of glutamine and serine in rat cerebrospinal fluid using capillary electrochromatography with a modified photopolymerized sol-gel monolithic column. <i>Journal of Chromatography A</i> , 2003 , 1004, 209-15	4.5	21
60	Impact of Laboratory-Induced Thermal Maturity on Asphaltene Molecular Structure. <i>Energy & Energy & En</i>	4.1	20
59	Preparation of oriented and aligned H(2) and HD by stimulated Raman pumping. <i>Journal of Chemical Physics</i> , 2008 , 129, 084312	3.9	20
58	Semiconductor radioisotope detector for capillary electrophoresis. <i>Journal of Chromatography A</i> , 1989 , 480, 259-270	4.5	20
57	Polycyclic aromatic hydrocarbons in asteroid 2008 TC3: Dispersion of organic compounds inside asteroids. <i>Meteoritics and Planetary Science</i> , 2010 , 45, 1710-1717	2.8	19
56	Microfluidic separation and capture of analytes for single-molecule spectroscopy. <i>Lab on A Chip</i> , 2007 , 7, 1663-5	7.2	19
55	Split injector for capillary zone electrophoresis. <i>Journal of Chromatography A</i> , 1991 , 559, 103-110	4.5	19
54	Microprobe two-step laser mass spectrometry as an analytical tool for meteoritic samples. <i>Symposium - International Astronomical Union</i> , 1997 , 178, 305-320		18
53	Formation of carbon-carbon bonds in the photochemical alkylation of polycyclic aromatic hydrocarbons. <i>Origins of Life and Evolution of Biospheres</i> , 2003 , 33, 17-35	1.5	18
52	Extensive electron-nuclear angular momentum exchange in vibrational autoionization of np and nf Rydberg states of NO. <i>Physical Review Letters</i> , 1996 , 76, 1591-1594	7.4	18
51	Collision-energy dependence of HD(nu'=1,j') product rotational distributions for the H + D2 reaction. <i>Journal of Chemical Physics</i> , 2005 , 123, 054306	3.9	17
50	Differential Cross Sections for the H + D2 -> HD($v' = 3$, $j' = 4-10$) + D Reaction above the Conical Intersection. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 12036-42	2.8	16
49	Ultra-low voltage triggered release of an anti-cancer drug from polypyrrole nanoparticles. <i>Nanoscale</i> , 2018 , 10, 9773-9779	7.7	16
48	Identifying the source of a strong fullerene envelope arising from laser desorption mass spectrometric analysis of meteoritic insoluble organic matter. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 5521-5529	5.5	16

(2006-2007)

47	Preparation of highly polarized nuclei: Observation and control of time-dependent polarization transfer from HCl35 molecular rotation to Cl35 nuclear spin. <i>Physical Review A</i> , 2007 , 76,	2.6	16	
46	Rovibrational product state distribution for inelastic H+D2 collisions. <i>Journal of Chemical Physics</i> , 2004 , 121, 6587-90	3.9	16	
45	Comparison of microprobe two-step laser desorption/laser ionization mass spectrometry and gas chromatography/ mass spectrometry studies of polycyclic aromatic hydrocarbons in ancient terrestrial rocks. <i>Journal of the American Society for Mass Spectrometry</i> , 2001 , 12, 989-1001	3.5	16	
44	Experimental determination of the specific opacity function for the Ba+HI->BaI(v=0)+H reaction. Journal of Chemical Physics, 1992 , 96, 2786-2798	3.9	16	
43	Rotational assignment using phase relationships in optical ptical double resonance: The Bal C 2 IX 2 system. <i>Journal of Chemical Physics</i> , 1985 , 82, 4449-4459	3.9	16	
42	Time-dependent depolarization of aligned HD molecules. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 142-7	3.6	15	
41	Correlated energy disposal and scattering dynamics of the Cl CD4(B = 2) reaction. <i>Molecular Physics</i> , 2005 , 103, 1837-1846	1.7	15	
40	Rotational analysis of the Bal C2BX2B (8,8) band. <i>Journal of Molecular Spectroscopy</i> , 1991 , 146, 465-492	1.3	15	
39	Differential cross sections for H + D2 -> HD($v' = 2$, $j' = 0,3,6,9$) + D at center-of-mass collision energies of 1.25, 1.61, and 1.97 eV. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 8175-9	3.6	14	
38	Electrically floating conductivity detection system for capillary electrophoresis. <i>Journal of Chromatography A</i> , 1998 , 813, 205-208	4.5	13	
37	Corroboration of theory for $H + D2> D + HD$ ($v' = 3, j' = 0$) reactive scattering dynamics. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 9266-8	2.8	13	
36	On One Hand But Not The Other: The Challenge of the Origin and Survival of Homochirality in Prebiotic Chemistry175-208		13	
35	The hydrogen games and other adventures in chemistry. <i>Annual Review of Physical Chemistry</i> , 2013 , 64, 1-19	15.7	12	
34	Optical control of ground-state atomic orbital alignment: Cl(2P3/2) atoms from HCl(v=2,J=1) photodissociation. <i>Journal of Chemical Physics</i> , 2007 , 127, 144307	3.9	12	
33	Evidence for a Cooper minimum in the photoionization dynamics of the NO D 2⊞ state. <i>Chemical Physics Letters</i> , 1994 , 225, 327-334	2.5	12	
32	Origin of InI emission in laser studies of the crossed beam reaction In+I2. <i>Chemical Physics</i> , 1981 , 58, 37	1 ₋₂₃ §3	12	
31	Multiple scattering mechanisms causing interference effects in the differential cross sections of H + D2 -> $HD(v' = 4, j') + D$ at 3.26 eV collision energy. <i>Journal of Chemical Physics</i> , 2016 , 145, 024308	3.9	12	
30	Optical Detection and Manipulation of Single Molecules in Room-Temperature Solutions. <i>Chemistry - A European Journal</i> , 2006 , 3, 335-339	4.8	11	

29	Reaction of Cl with CD4 excited to the second C-D stretching overtone. <i>Journal of Chemical Physics</i> , 2007 , 126, 044315	3.9	11
28	State-to-state dynamics of the Cl + CH3OH> HCl + CH2OH reaction. <i>Journal of Chemical Physics</i> , 2004 , 120, 4231-9	3.9	11
27	Lysis of a Single Cyanobacterium for Whole Genome Amplification. <i>Micromachines</i> , 2013 , 4, 321-332	3.3	9
26	Ultraviolet thermal lensing detection of amino acids. <i>Journal of Chromatography A</i> , 2009 , 1216, 3423-30	4.5	9
25	Whole gene amplification and protein separation from a few cells. <i>Analytical Biochemistry</i> , 2011 , 411, 64-70	3.1	9
24	Near-surface reduction of cavity ring-down spectroscopy detection sensitivity. <i>Chemical Physics Letters</i> , 2000 , 318, 555-560	2.5	9
23	Observation of Optical Radio-Frequency Double Resonance in Molecular Fluorescence. <i>Journal of Chemical Physics</i> , 1968 , 49, 4231-4232	3.9	9
22	An ultrasonically powered implantable device for targeted drug delivery. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2016 , 2016, 541-544	0.9	8
21	Control and imaging of O(1D2) precession. <i>Nature Chemistry</i> , 2011 , 3, 28-33	17.6	8
20	Early detection of unilateral ureteral obstruction by desorption electrospray ionization mass spectrometry. <i>Scientific Reports</i> , 2019 , 9, 11007	4.9	7
19	Laser desorption lamp ionization source for ion trap mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2015 , 50, 160-4	2.2	7
18	Folding control and unfolding free energy of yeast iso-1-cytochrome c bound to layered zirconium phosphate materials monitored by surface plasmon resonance. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 9201-8	3.4	7
17	Pathogen-Imprinted Organosiloxane Polymers as Selective Biosensors for the Detection of Targeted. <i>Journal of Carbon Research</i> , 2018 , 4, 29	3.3	6
16	Single-molecule spectroscopy using microfluidic platforms. <i>Methods in Enzymology</i> , 2010 , 472, 119-32	1.7	6
15	Microscale detection of polychlorinated biphenyls using two-step laser mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2001 , 212, 41-48	1.9	6
14	Bounce-by-bounce cavity ring-down spectroscopy: femtosecond temporal imaging. <i>ChemPhysChem</i> , 2001 , 2, 118-21	3.2	6
13	Asphaltenes. Springer Handbooks, 2017 , 221-250	1.3	5
12	On-Column Radioisotope Detection for Capillary Electrophoresis. ACS Symposium Series, 1990, 60-89	0.4	5

LIST OF PUBLICATIONS

11	Microprobe laser mass spectrometry studies of polycyclic aromatic hydrocarbon distributions on harbor sediments and coals. <i>Israel Journal of Chemistry</i> , 2001 , 41, 105-110	3.4	4
10	Vibrational and collisional energy effects in the reaction of ammonia ions with methylamine. <i>Journal of Chemical Physics</i> , 2001 , 115, 124-132	3.9	3
9	Determination of Photodestruction Quantum Yields Using Capillary Electro-Phoresis: Application to o-Phthalalde-Hyde/Mercaptoethanol-Labeled Amino Acids. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1995 , 18, 3833-3846		2
8	Novel Separation Method on a Chip Using Capillary Electrophoresis in Combination with Dielectrophoresis 2000 , 269-272		2
7	Effects of Bending Excitation on the Reaction of Chlorine Atoms with Methane. <i>Angewandte Chemie</i> , 2005 , 117, 2434-2437	3.6	1
6	Softening of fused-silica capillaries during particle packing. <i>Electrophoresis</i> , 2000 , 21, 1430-1	3.6	1
5	State-to-state dynamics and doubly differential cross sections of the reaction of chlorine atoms with CH4(v3=1, J) 1993 ,		1
4	Collaborative Research: The Good, the Bad, and the Beautiful. ACS Symposium Series, 2007, 259-270	0.4	
3	In-situ Preparation of Photopolymerized Sol-Gel Monoliths for Capillary Electrochromatography on a Chip 2001 , 557-558		
2	Patch Clamp Detection of Neuroreceptor Modulators in Capillary Electrophoresis 1997 , 1131-1138		
1	Azapodophyllotoxin Causes Lymphoma and Kidney Cancer Regression by Disrupting Tubulin and Monoglycerols <i>ACS Medicinal Chemistry Letters</i> , 2022 , 13, 615-622	4.3	