Iain D Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12063530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrin Structure, Activation, and Interactions. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004994-a004994.	2.3	845
2	Structural Basis of Integrin Activation by Talin. Cell, 2007, 128, 171-182.	13.5	585
3	The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell, 1993, 75, 25-36.	13.5	559
4	The three-dimensional structure of the tenth type III module of fibronectin: An insight into RGD-mediated interactions. Cell, 1992, 71, 671-678.	13.5	487
5	Talins and kindlins: partners in integrin-mediated adhesion. Nature Reviews Molecular Cell Biology, 2013, 14, 503-517.	16.1	486
6	Structural Determinants of Integrin Recognition by Talin. Molecular Cell, 2003, 11, 49-58.	4.5	475
7	The solution structure of human epidermal growth factor. Nature, 1987, 327, 339-341.	13.7	363
8	The Molecular Basis of Filamin Binding to Integrins and Competition with Talin. Molecular Cell, 2006, 21, 337-347.	4.5	359
9	Epidermal growth factor-like modules. Current Opinion in Structural Biology, 1993, 3, 385-392.	2.6	352
10	Pathogenic bacteria attach to human fibronectin through a tandem β-zipper. Nature, 2003, 423, 177-181.	13.7	326
11	Structures of the Cd44–hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nature Structural and Molecular Biology, 2007, 14, 234-239.	3.6	314
12	Structure and distribution of modules in extracellular proteins. Quarterly Reviews of Biophysics, 1996, 29, 119-167.	2.4	307
13	Solution Structure of the Link Module: A Hyaluronan-Binding Domain Involved in Extracellular Matrix Stability and Cell Migration. Cell, 1996, 86, 767-775.	13.5	293
14	The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO Journal, 2009, 28, 3623-3632.	3.5	287
15	Human erythrocyte metabolism studies by 1 H spin echo NMR. FEBS Letters, 1977, 82, 12-16.	1.3	277
16	The structure of melittin. A 1H-NMR study in methanol. FEBS Journal, 1988, 173, 139-146.	0.2	247
17	Structure of the Regulatory Hyaluronan Binding Domain in the Inflammatory Leukocyte Homing Receptor CD44. Molecular Cell, 2004, 13, 483-496.	4.5	228
18	Solution structure and ligand-binding site of the SH3 domain of the p85α subunit of phosphatidylinositol 3-kinase. Cell, 1993, 73, 813-822.	13.5	209

#	Article	IF	CITATIONS
19	Fibronectin structure and assembly. Current Opinion in Cell Biology, 1994, 6, 648-655.	2.6	208
20	Protein modules. Trends in Biochemical Sciences, 1991, 16, 13-17.	3.7	207
21	Influence of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanisms upon longitudinal relaxation rates of 15N in macromolecules. Chemical Physics Letters, 1990, 175, 477-482.	1.2	200
22	Structure of an SH2 domain of the p85α subunit of phosphatidylinositol-3-OH kinase. Nature, 1992, 358, 684-687.	13.7	193
23	Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14784-14789.	3.3	187
24	Structure and function of fibronectin modules. Matrix Biology, 1996, 15, 313-320.	1.5	185
25	Structure of domain 1 of rat T lymphocyte CD2 antigen. Nature, 1991, 353, 762-765.	13.7	161
26	The Folding Kinetics and Thermodynamics of the Fyn-SH3 Domainâ€. Biochemistry, 1998, 37, 2529-2537.	1.2	152
27	The tail of integrin activation. Trends in Biochemical Sciences, 2011, 36, 191-198.	3.7	147
28	Three-Dimensional Solution Structure of the Extracellular Region of the Complement Regulatory Protein CD59, a New Cell-Surface Protein Domain Related to Snake Venom Neurotoxins. Biochemistry, 1994, 33, 4471-4482.	1.2	144
29	High-resolution proton NMR study of the solution structure of alamethicin. Biochemistry, 1987, 26, 1043-1050.	1.2	142
30	Temperature dependent molecular motion of a tyrosine residue of ferrocytochromeC. FEBS Letters, 1976, 70, 96-100.	1.3	138
31	Structure of three tandem filamin domains reveals auto-inhibition of ligand binding. EMBO Journal, 2007, 26, 3993-4004.	3.5	134
32	Structural Requirements for Biological Activity of the Ninth and Tenth FIII Domains of Human Fibronectin. Journal of Biological Chemistry, 1997, 272, 6159-6166.	1.6	132
33	Human epidermal growth factor. Journal of Molecular Biology, 1992, 227, 271-282.	2.0	129
34	NMR studies of a viral protein that mimics the regulators of complement activation. Journal of Molecular Biology, 1997, 272, 253-265.	2.0	127
35	Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy. Journal of Molecular Biology, 1998, 276, 657-667.	2.0	126
36	Building proteins with fibronectin type III modules. Structure, 1994, 2, 333-337.	1.6	122

#	Article	IF	CITATIONS
37	A comparison of the folding kinetics and thermodynamics of two homologous fibronectin type III modules. Journal of Molecular Biology, 1997, 270, 763-770.	2.0	119
38	Structure of the fibronectin type 1 module. Nature, 1990, 345, 642-646.	13.7	117
39	Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions (Review). Molecular Membrane Biology, 2008, 25, 376-387.	2.0	114
40	Î ² Integrin Tyrosine Phosphorylation Is a Conserved Mechanism for Regulating Talin-induced Integrin Activation. Journal of Biological Chemistry, 2009, 284, 36700-36710.	1.6	111
41	NMR Analysis of Structure and Dynamics of the Cytosolic Tails of Integrin αIIbβ3 in Aqueous Solutionâ€. Biochemistry, 2001, 40, 7498-7508.	1.2	107
42	The Structure of an Interdomain Complex That Regulates Talin Activity. Journal of Biological Chemistry, 2009, 284, 15097-15106.	1.6	107
43	The talin–tail interaction places integrin activation on FERM ground. Trends in Biochemical Sciences, 2004, 29, 429-435.	3.7	101
44	Proton NMR assignment and secondary structure of the cell adhesion type III module of fibronectin. Biochemistry, 1992, 31, 2068-2073.	1.2	100
45	Solution structure and peptide binding of the SH3 domain from human Fyn. Structure, 1996, 4, 705-714.	1.6	100
46	Contribution of proline-14 to the structure and actions of melittin. FEBS Letters, 1991, 281, 240-244.	1.3	99
47	Module-module interactions in the cell binding region of fibronectin: stability, flexibility and specificity. Journal of Molecular Biology, 1997, 265, 565-579.	2.0	98
48	Solution structure of a type 2 module from fibronectin: implications for the structure and function of the gelatin-binding domain. Structure, 1997, 5, 359-370.	1.6	98
49	An Integrin Phosphorylation Switch. Journal of Biological Chemistry, 2008, 283, 5420-5426.	1.6	98
50	Solution Structure of a Pair of Fibronectin Type 1 Modules with Fibrin Binding Activity. Journal of Molecular Biology, 1994, 235, 1302-1311.	2.0	97
51	Structural Basis of the Migfilin-Filamin Interaction and Competition with Integrin Î ² Tails. Journal of Biological Chemistry, 2008, 283, 35154-35163.	1.6	97
52	The effects of guanidine hydrochloride on the 'random coil' conformations and NMR chemical shifts of the peptide series GGXGG. Journal of Biomolecular NMR, 1997, 10, 221-230.	1.6	96
53	Localization and characterization of the hyaluronan-binding site on the Link module from human TSG-6. Structure, 2000, 8, 763-774.	1.6	95
54	Molecular Recognition of Paxillin LD Motifs by the Focal Adhesion Targeting Domain. Structure, 2003, 11, 1207-1217.	1.6	93

#	Article	IF	CITATIONS
55	Activity, disulphate mapping and structural modelling of the fifth domain of human β2 -glycoprotein I. FEBS Letters, 1992, 313, 193-197.	1.3	89
56	Four-helix bundle growth factors and their receptors: protein-protein interactions. Current Opinion in Structural Biology, 1995, 5, 114-121.	2.6	82
57	The Link Module from Ovulation- and Inflammation-associated Protein TSG-6 Changes Conformation on Hyaluronan Binding. Journal of Biological Chemistry, 2003, 278, 49261-49270.	1.6	81
58	Structural Diversity in Integrin/Talin Interactions. Structure, 2010, 18, 1654-1666.	1.6	81
59	The Structure of the N-Terminus of Kindlin-1: A Domain Important for αIIbβ3 Integrin Activation. Journal of Molecular Biology, 2009, 394, 944-956.	2.0	80
60	The Role of the Src Homology 3-Src Homology 2 Interface in the Regulation of Src Kinases. Journal of Biological Chemistry, 2001, 276, 17199-17205.	1.6	79
61	Solution Structure and Dynamics of a Calcium Binding Epidermal Growth Factor-like Domain Pair from the Neonatal Region of Human Fibrillin-1. Journal of Biological Chemistry, 2003, 278, 12199-12206.	1.6	78
62	Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4195-4200.	3.3	77
63	High-resolution proton NMR study of the solution structure of .deltahemolysin. Biochemistry, 1988, 27, 1643-1647.	1.2	75
64	Domain-Specific Interactions of Talin with the Membrane-Proximal Region of the Integrin \hat{l}^2 3 Subunit. Biochemistry, 2003, 42, 8307-8312.	1.2	75
65	Interdomain association in fibronectin: insight into cryptic sites and fibrillogenesis. EMBO Journal, 2007, 26, 2575-2583.	3.5	73
66	Backbone dynamics of a cbEGF domain pair in the presence of calcium 1 1Edited by M. Summers. Journal of Molecular Biology, 2000, 296, 1065-1078.	2.0	72
67	Structural Basis for Phosphatidylinositol Phosphate Kinase Type IÎ ³ Binding to Talin at Focal Adhesions. Journal of Biological Chemistry, 2005, 280, 8381-8386.	1.6	71
68	Towards a Structure for a TSG-6·Hyaluronan Complex by Modeling and NMR Spectroscopy. Journal of Biological Chemistry, 2005, 280, 18189-18201.	1.6	69
69	Extracellular matrix: from atomic resolution to ultrastructure. Current Opinion in Cell Biology, 2007, 19, 578-583.	2.6	67
70	Structural Analysis of Collagen Type I Interactions with Human Fibronectin Reveals a Cooperative Binding Mode. Journal of Biological Chemistry, 2013, 288, 17441-17450.	1.6	67
71	The solution structures of epidermal growth factor and transforming growth factor alpha. Progress in Growth Factor Research, 1989, 1, 13-22.	1.7	66
72	The Eighth FIII Domain of Human Fibronectin Promotes Integrin α5β1 Binding via Stabilization of the Ninth FIII Domain. Journal of Biological Chemistry, 2001, 276, 38885-38892.	1.6	66

#	Article	IF	CITATIONS
73	Dynamic studies of a fibronectin type I module pair at three frequencies: Anisotropic modelling and direct determination of conformational exchange. Journal of Biomolecular NMR, 1996, 8, 369-78.	1.6	65
74	Solution Structure and Sugar-Binding Mechanism of Mouse Latrophilin-1 RBL: a 7TM Receptor-Attached Lectin-Like Domain. Structure, 2008, 16, 944-953.	1.6	65
75	The specific incorporation of labelled aromatic amino acids into proteins through growth of bacteria in the presence of glyphosate. FEBS Letters, 1990, 272, 34-36.	1.3	64
76	High Affinity Streptococcal Binding to Human Fibronectin Requires Specific Recognition of Sequential F1 Modules. Journal of Biological Chemistry, 2004, 279, 39017-39025.	1.6	63
77	NMR Studies of Modular Protein Structures and Their Interactions. Chemical Reviews, 2004, 104, 3557-3566.	23.0	62
78	Multiscale simulations suggest a mechanism for integrin inside-out activation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11890-11895.	3.3	62
79	The solution structure of human transforming growth factor alpha. FEBS Journal, 1991, 198, 555-562.	0.2	61
80	The Structure of the Talin/Integrin Complex at a Lipid Bilayer: An NMR and MD Simulation Study. Structure, 2010, 18, 1280-1288.	1.6	57
81	NMR Analysis of Interacting Soluble Forms of the Cellâ^'Cell Recognition Molecules CD2 and CD48. Biochemistry, 1996, 35, 5982-5991.	1.2	53
82	Solution structure of the fibrin binding finger domain of tissue-type plasminogen activator determined by 1H nuclear magnetic resonance. Journal of Molecular Biology, 1992, 225, 821-833.	2.0	52
83	Solution structure of the glycosylated second type 2 module of fibronectin. Journal of Molecular Biology, 1998, 276, 177-187.	2.0	52
84	NMR studies of kinetics in cells and tissues. Quarterly Reviews of Biophysics, 1987, 19, 159-182.	2.4	51
85	The march of structural biology. Nature Reviews Molecular Cell Biology, 2002, 3, 377-381.	16.1	51
86	Structure-function relationships in human epidermal growth factor studied by site-directed mutagenesis and proton NMR. Biochemistry, 1991, 30, 8891-8898.	1.2	50
87	Interdomain Tilt Angle Determines Integrin-dependent Function of the Ninth and Tenth FIII Domains of Human Fibronectin. Journal of Biological Chemistry, 2004, 279, 55995-56003.	1.6	50
88	Structure-function relationships in epidermal growth factor (egf) and transforming growth factor-alpha (TGF-1±). Biochemical Pharmacology, 1990, 40, 35-40.	2.0	49
89	Phosphopeptide binding to the Nâ€terminal SH2 domain of the p85α subunit of PI 3′â€kinase: A heteronuclea NMR study. Protein Science, 1994, 3, 1020-1030.	r 3.1	49
90	Building protein structure and function from modular units. Trends in Biotechnology, 1994, 12, 168-172.	4.9	49

#	Article	IF	CITATIONS
91	Mapping the Heparin-binding Site on the13–14F3 Fragment of Fibronectin. Journal of Biological Chemistry, 2002, 277, 50629-50635.	1.6	48
92	Spin echo double resonance: a novel method for detecting decoupling in Fourier transform nuclear magnetic resonance. Journal of the Chemical Society Chemical Communications, 1975, , 750.	2.0	47
93	Ligand requirements for Ca2+ binding to EGF-like domains. Protein Engineering, Design and Selection, 1992, 5, 489-494.	1.0	47
94	Structural Homology of Cytochromes c. FEBS Journal, 1978, 83, 261-275.	0.2	46
95	Motogenic Sites in Human Fibronectin Are Masked by Long Range Interactions. Journal of Biological Chemistry, 2009, 284, 15668-15675.	1.6	46
96	High resolution 1 H NMR study of the solution structure of the S4 segment of the sodium channel protein. FEBS Letters, 1989, 257, 113-117.	1.3	45
97	Alternative Modes of Tyrosyl Phosphopeptide Binding to a Src Family SH2 Domain:Â Implications for Regulation of Tyrosine Kinase Activityâ€. Biochemistry, 1996, 35, 11062-11069.	1.2	45
98	The SH2 domain from the tyrosine kinase Fyn in complex with a phosphotyrosyl peptide reveals insights into domain stability and binding specificity. Structure, 1997, 5, 1313-1323.	1.6	44
99	Solution Structure of the LDL Receptor EGF-AB Pair. Structure, 2001, 9, 451-456.	1.6	44
100	Structural Basis for the Interaction between the Cytoplasmic Domain of the Hyaluronate Receptor Layilin and the Talin F3 Subdomain. Journal of Molecular Biology, 2008, 382, 112-126.	2.0	44
101	Cooling overall spin temperature: Protein NMR experiments optimized for longitudinal relaxation effects. Journal of Magnetic Resonance, 2006, 178, 206-211.	1.2	39
102	A Helix Heterodimer in a Lipid Bilayer: Prediction of the Structure of an Integrin Transmembrane Domain via Multiscale Simulations. Structure, 2011, 19, 1477-1484.	1.6	39
103	NMR and Structural Genomics. Accounts of Chemical Research, 2003, 36, 207-214.	7.6	38
104	The solution structure and backbone dynamics of the fibronectin type I and epidermal growth factor-like pair of modules of tissue-type plasminogen activator. Structure, 1995, 3, 823-833.	1.6	37
105	Solution Structure of the N-Terminal F1 Module Pair from Human Fibronectinâ€,‡. Biochemistry, 1999, 38, 8304-8312.	1.2	37
106	Observation of carbon labelling in cell metabolites using proton spin echo NMR. Biochemical and Biophysical Research Communications, 1982, 109, 864-871.	1.0	35
107	SH3-SH2 Domain Orientation in Src Kinases. Structure, 2002, 10, 901-911.	1.6	35
108	The C-terminal rod 2 fragment of filamin A forms a compact structure that can be extended. Biochemical Journal, 2012, 446, 261-269.	1.7	34

#	Article	IF	CITATIONS
109	NMR of modular proteins. Nature Structural Biology, 1998, 5, 496-499.	9.7	33
110	Biophysical Analysis of Kindlin-3 Reveals an Elongated Conformation and Maps Integrin Binding to the Membrane-distal β-Subunit NPXY Motif. Journal of Biological Chemistry, 2012, 287, 37715-37731.	1.6	33
111	A high-resolution 1H-NMR study of human transforming growth factor alpha. Structure and pH-dependent conformational interconversion. FEBS Journal, 1989, 179, 629-637.	0.2	32
112	A Membrane-distal Segment of the Integrin αIIbCytoplasmic Domain Regulates Integrin Activation. Journal of Biological Chemistry, 2001, 276, 22514-22521.	1.6	32
113	Structural Analysis of the Interactions Between Paxillin LD Motifs and α-Parvin. Structure, 2008, 16, 1521-1531.	1.6	32
114	Determining the Molecular Basis for the pH-dependent Interaction between the Link Module of Human TSG-6 and Hyaluronan. Journal of Biological Chemistry, 2007, 282, 12976-12988.	1.6	31
115	The Role of the Fibronectin IGD Motif in Stimulating Fibroblast Migration. Journal of Biological Chemistry, 2007, 282, 35530-35535.	1.6	31
116	Effects of the N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from human fibrillin-1. Journal of Molecular Biology, 2002, 316, 113-125.	2.0	30
117	Implications for Collagen Binding from the Crystallographic Structure of Fibronectin 6FnI1–2FnII7FnI. Journal of Biological Chemistry, 2010, 285, 33764-33770.	1.6	30
118	Characterization of 14-3-3-ζ Interactions with Integrin Tails. Journal of Molecular Biology, 2013, 425, 3060-3072.	2.0	30
119	Conformational Changes in Talin on Binding to Anionic Phospholipid Membranes Facilitate Signaling by Integrin Transmembrane Helices. PLoS Computational Biology, 2013, 9, e1003316.	1.5	30
120	Intramolecular nuclear Overhauser effects in proton magnetic resonance spectra of proteins. Journal of the Chemical Society Chemical Communications, 1974, , 888.	2.0	29
121	The Integrin Receptor in Biologically Relevant Bilayers: Insights from Molecular Dynamics Simulations. Journal of Membrane Biology, 2017, 250, 337-351.	1.0	29
122	Effects of proline <i>cisâ€ŧrans</i> isomerization on TB domain secondary structure. Protein Science, 1998, 7, 2127-2135.	3.1	28
123	Studies of focal adhesion assembly. Biochemical Society Transactions, 2008, 36, 263-266.	1.6	28
124	A 1H-NMR study of the activity expressed by lactate dehydrogenase in the human erythrocyte. FEBS Journal, 1986, 158, 299-305.	0.2	27
125	A multinuclear NMR study of 2,3-bisphosphoglycerate metabolism in the human erythrocyte. Biochimica Et Biophysica Acta - Molecular Cell Research, 1984, 805, 19-24.	1.9	26
126	Secondary structure of a pair of fibronectin type 1 modules by two-dimensional nuclear magnetic resonance. Biochemistry, 1993, 32, 7388-7395.	1.2	25

#	Article	IF	CITATIONS
127	Probing protein-peptide binding surfaces using charged stable free radicals and transverse paramagnetic relaxation enhancement (PRE). Journal of Biomolecular NMR, 2005, 31, 155-160.	1.6	24
128	Secondary Structure of Fibronectin Type 1 and Epidermal Growth Factor Modules from Tissue-Type Plasminogen Activator by Nuclear Magnetic Resonance. Biochemistry, 1994, 33, 2422-2429.	1.2	23
129	Solution structure of a pair of modules from the gelatin-binding domain of fibronectin. Structure, 1999, 7, 1451-S3.	1.6	23
130	Identification of Residues Involved in the Interaction ofStaphylococcus aureusFibronectin-Binding Protein with the4F15F1 Module Pair of Human Fibronectin Using Heteronuclear NMR Spectroscopyâ€. Biochemistry, 2000, 39, 2887-2893.	1.2	23
131	Binding, Domain Orientation, and Dynamics of the Lck SH3â^'SH2 Domain Pair and Comparison with Other Src-Family Kinases. Biochemistry, 2005, 44, 13043-13050.	1.2	23
132	Interface Characterization of the Type II Module Pair from Fibronectinâ€. Biochemistry, 2000, 39, 8374-8381.	1.2	22
133	Gelatin binding to the8F19F1 module pair of human fibronectin requires site-specific N-glycosylation. FEBS Letters, 2005, 579, 4529-4534.	1.3	22
134	High-resolution structural studies of the factor XIIIa crosslinking site and the first type 1 module of fibronectin. Nature Structural and Molecular Biology, 1995, 2, 946-950.	3.6	21
135	Bacillus subtilis mutations that alter the pathway of phosphorylation of the anti-anti-σF factor SpoIIAA lead to a Spoâ^' phenotype. Molecular Microbiology, 2001, 40, 9-19.	1.2	21
136	Model of a Six Immunoglobulin-Like Domain Fragment of Filamin A (16–21) Built Using Residual Dipolar Couplings. Journal of the American Chemical Society, 2012, 134, 6660-6672.	6.6	21
137	Nuclear-magnetic-resonance studies of human epidermal growth factor. FEBS Journal, 1990, 193, 807-815.	0.2	20
138	Integrin activation—the importance of a positive feedback. Bulletin of Mathematical Biology, 2006, 68, 945-956.	0.9	20
139	Solution studies of the SH2 domain from the fyn tyrosine kinase: secondary structure, backbone dynamics and protein association. European Biophysics Journal, 1996, 24, 371-380.	1.2	19
140	The Effects of Dissolved Oxygen upon Amide Proton Relaxation and Chemical Shift in a Perdeuterated Protein. Journal of Magnetic Resonance, 2002, 157, 181-189.	1.2	18
141	Protein structure determination by nuclear magnetic resonance. BioEssays, 1988, 8, 52-56.	1.2	17
142	Amide proton relaxation measurements employing a highly deuterated protein. Journal of Magnetic Resonance, 2004, 166, 190-201.	1.2	17
143	Assembly of a Filamin Four-domain Fragment and the Influence of Splicing Variant-1 on the Structure. Journal of Biological Chemistry, 2011, 286, 26921-26930.	1.6	17
144	Solution structure of a PAN module from the apicomplexan parasite Eimeria tenella. Journal of Structural and Functional Genomics, 2003, 4, 227-234.	1.2	15

#	Article	lF	CITATIONS
145	The Streptococcal Binding Site in the Gelatin-binding Domain of Fibronectin Is Consistent with a Non-linear Arrangement of Modules. Journal of Biological Chemistry, 2010, 285, 36977-36983.	1.6	15
146	The relative orientation of the fibronectin 6F1(1)F2 module pair: a 15N NMR relaxation study. Journal of Biomolecular NMR, 2000, 17, 203-214.	1.6	14
147	[16] Strategy for studying modular proteins: Application to complement modules. Methods in Enzymology, 1994, 239, 464-485.	0.4	12
148	Preparation of recombinant fibronectin fragments for functional and structural studies. Methods in Molecular Biology, 2009, 522, 73-99.	0.4	12
149	Solution structure of the coiled-coil trimerization domain from lung surfactant protein D. Journal of Biomolecular NMR, 2002, 24, 89-102.	1.6	11
150	Exploiting the carboxylate chemical shift to resolve degenerate resonances in spectra of13C-labelled glycosaminoglycans. Magnetic Resonance in Chemistry, 2005, 43, 805-815.	1.1	11
151	Structural insight into binding ofStaphylococcus aureusto human fibronectin. FEBS Letters, 2006, 580, 273-277.	1.3	11
152	Binding of a peptide from aStreptococcus dysgalactiaeMSCRAMM to the N-terminal F1 module pair of human fibronectin involves both modules. FEBS Letters, 2001, 497, 137-140.	1.3	10
153	Gelatin Binding to the6F11F22F2 Fragment of Fibronectin Is Independent of Moduleâ^'Module Interactionsâ€. Biochemistry, 2005, 44, 14682-14687.	1.2	10
154	Integrin Binding Immunoglobulin Type Filamin Domains Have Variable Stability. Biochemistry, 2008, 47, 11055-11061.	1.2	9
155	The Croonian lecture 2006 Structure of the living cell. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2379-2391.	1.8	9
156	Protein structure determination by NMR. Trends in Biotechnology, 1987, 5, 302-306.	4.9	8
157	Preparation of Isotopically Labeled Recombinant Fragments of Fibronectin for Functional and Structural Study by Heteronuclear Nuclear Magnetic Resonance Spectroscopy. , 2000, 139, 59-69.		7
158	Proton NMR measurements of hydrogen exchange at the C-3 position of 3-hydroxybutyrate in suspensions of rat liver mitochondria. FEBS Letters, 1983, 163, 185-188.	1.3	6
159	Structure-function studies of CD2 by n.m.r. and mutagenesis. Biochemical Society Transactions, 1993, 21, 947-952.	1.6	6
160	The Talin FERM Domain Is Not So FERM. Structure, 2010, 18, 1222-1223.	1.6	6
161	The evolution of protein NMR. Biomedical Spectroscopy and Imaging, 2013, 2, 245-264.	1.2	6
162	Structure function relationships in EGF, TGF- \hat{I} + and IGFI. Journal of Cell Science, 1990, 1990, 5-10.	1.2	5

#	Article	IF	CITATIONS
163	GETTING TO GRIPS WITH HA-PROTEIN INTERACTIONS. , 2002, , 161-172.		5
164	Association of aldolase with the membranes in concentrated human erythrocyte lysates. Biochemical Society Transactions, 1983, 11, 281-282.	1.6	3
165	A nuclear magnetic resonance study of alamethicin-, δ-haemolysin-, and melittin-induced sodium leakage from large unilamellar vesicles. Biochemical Society Transactions, 1988, 16, 594-595.	1.6	3
166	Shape and Dynamics of a Calcium-Binding Protein Investigated by Nitrogen-15 NMR Relaxation. , 2002, 173, 285-300.		3
167	The Structure and Dynamics of Membrane Spanning Helices by High Resolution NMR and Molecular Dynamics. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1988, , 91-101.	0.2	3
168	1H n.m.r. studies of the kinetic properties expressed by erythrocyte enzymes <i>in situ</i> and <i>in vitro</i> . Biochemical Society Transactions, 1983, 11, 280-281.	1.6	2
169	Measurement of peptide transport using proton nuclear magnetic resonance spectroscopy. Biochemical Society Transactions, 1988, 16, 635-636.	1.6	2
170	Towards the Structure of Mosaic Proteins: Use of Protein Expression and NMR Techniques. , 1990, , 49-60.		2
171	Effects of K+ on mitochondrial respiration. Biochemical Society Transactions, 1986, 14, 774-775.	1.6	1
172	NMR studies of enzymes. Fresenius Zeitschrift Für Analytische Chemie, 1986, 324, 437-441.	0.7	1
173	[21] Solution structures of modular proteins by nuclear magnetic resonance. Methods in Enzymology, 1994, 245, 451-469.	0.4	1
174	Toward the Structure of Mosaic Proteins: Expression, Purification and Structural Analysis of a Pair of Fibronectin Type1 Modules. , 1993, , 623-631.		0
175	NMR Studies of the Structure and Role of Modules Involved in Protein-Protein Interactions. , 1993, , 134-158.		0