
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1206350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulatory T cells and transplantation tolerance: <i>Emerging from the darkness?</i> . European Journal of Immunology, 2021, 51, 1580-1591.	1.6	7
2	Infectious tolerance. What are we missing?. Cellular Immunology, 2020, 354, 104152.	1.4	5
3	Coreceptor blockade targeting CD4 and CD8 allows acceptance of allogeneic human pluripotent stem cell grafts in humanized mice. Biomaterials, 2020, 248, 120013.	5.7	10
4	The evolution of therapeutic antibodies. , 2020, , 296-298.		0
5	A Novel Role for Triglyceride Metabolism in Foxp3 Expression. Frontiers in Immunology, 2019, 10, 1860.	2.2	32
6	Human Monoclonal Antibodies: The Benefits of Humanization. Methods in Molecular Biology, 2019, 1904, 1-10.	0.4	45
7	Single-cell transcriptomics reveal that PD-1 mediates immune tolerance by regulating proliferation of regulatory T cells. Genome Medicine, 2018, 10, 71.	3.6	30
8	Non-Invasive Multiphoton Imaging of Islets Transplanted Into the Pinna of the NOD Mouse Ear Reveals the Immediate Effect of Anti-CD3 Treatment in Autoimmune Diabetes. Frontiers in Immunology, 2018, 9, 1006.	2.2	8
9	CD4+ T Cell Fate Decisions Are Stochastic, Precede Cell Division, Depend on GITR Co-Stimulation, and Are Associated With Uropodium Development. Frontiers in Immunology, 2018, 9, 1381.	2.2	10
10	Foxp3+ T reg cells control psoriasiform inflammation by restraining an IFN-l–driven CD8+ T cell response. Journal of Experimental Medicine, 2018, 215, 1987-1998.	4.2	50
11	Regulatory T Cells Promote Apelin-Mediated Sprouting Angiogenesis in Type 2 Diabetes. Cell Reports, 2018, 24, 1610-1626.	2.9	60
12	Antiâ€ <scp>CD</scp> 3 treatment upâ€regulates programmed cell death proteinâ€1 expression on activated effector T cells and severely impairs their inflammatory capacity. Immunology, 2017, 151, 248-260.	2.0	29
13	Transplantation tolerance: the big picture. Where do we stand, where should we go?. Clinical and Experimental Immunology, 2017, 189, 135-137.	1.1	3
14	The Induction and Maintenance of Transplant Tolerance Engages Both Regulatory and Anergic CD4+ T cells. Frontiers in Immunology, 2017, 8, 218.	2.2	37
15	A Bacterial Artificial Chromosome Reporter System for Expression of the Human FOXP3 Gene in Mouse Regulatory T-Cells. Frontiers in Immunology, 2017, 8, 279.	2.2	5
16	Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. JCI Insight, 2017, 2, e89160.	2.3	150
17	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	2.2	43
18	The Role of Lipid Metabolism in T Lymphocyte Differentiation and Survival. Frontiers in Immunology, 2017. 8, 1949.	2.2	127

#	Article	IF	CITATIONS
19	Induced Foxp3+ T Cells Colonizing Tolerated Allografts Exhibit the Hypomethylation Pattern Typical of Mature Regulatory T Cells. Frontiers in Immunology, 2016, 7, 124.	2.2	13
20	CD52-Negative NK Cells Are Abundant in the Liver and Less Susceptible to Alemtuzumab Treatment. PLoS ONE, 2016, 11, e0161618.	1.1	6
21	Induction of Immunological Tolerance as a Therapeutic Procedure. Microbiology Spectrum, 2016, 4, .	1.2	2
22	Mechanisms of immunological tolerance. Clinical Biochemistry, 2016, 49, 324-328.	0.8	19
23	Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmunity Reviews, 2016, 15, 726-735.	2.5	84
24	Antibody immunogenicity: does bioprocessing hold all the answers?. Pharmaceutical Bioprocessing, 2015, 3, 175-177.	0.8	1
25	Dickkopf-3, a Tissue-Derived Modulator of Local T-Cell Responses. Frontiers in Immunology, 2015, 6, 78.	2.2	40
26	Enhanced Efficacy from Gene Therapy in Pompe Disease Using Coreceptor Blockade. Human Gene Therapy, 2015, 26, 26-35.	1.4	29
27	Non-depleting anti-CD4 monoclonal antibody induces immune tolerance to ERT in a murine model of Pompe disease. Molecular Genetics and Metabolism Reports, 2014, 1, 446-450.	0.4	13
28	Tolerance induction to human stem cell transplants with extension to their differentiated progeny. Nature Communications, 2014, 5, 5629.	5.8	26
29	Guiding Postablative Lymphocyte Reconstitution as a Route Toward Transplantation Tolerance. American Journal of Transplantation, 2014, 14, 1678-1689.	2.6	12
30	Expansion of Foxp3 ⁺ Tâ€cell populations by <i>Candida albicans</i> enhances both Th17â€cell responses and fungal dissemination after intravenous challenge. European Journal of Immunology, 2014, 44, 1069-1083.	1.6	55
31	Drug minimization in transplantation. Current Opinion in Organ Transplantation, 2014, 19, 331-333.	0.8	2
32	Gene Expression in the <i>Gitr</i> Locus Is Regulated by NF-κB and Foxp3 through an Enhancer. Journal of Immunology, 2014, 192, 3915-3924.	0.4	14
33	Nutrient Sensing via mTOR in T Cells Maintains a Tolerogenic Microenvironment. Frontiers in Immunology, 2014, 5, 409.	2.2	63
34	TGF-β–Mediated <i>Foxp3</i> Gene Expression Is Cooperatively Regulated by Stat5, Creb, and AP-1 through CNS2. Journal of Immunology, 2014, 192, 475-483.	0.4	83
35	Human Monoclonal Antibodies: The Residual Challenge of Antibody Immunogenicity. Methods in Molecular Biology, 2014, 1060, 1-8.	0.4	9
36	Harnessing FOXP3+ regulatory T cells for transplantation tolerance. Journal of Clinical Investigation, 2014, 124, 1439-1445.	3.9	56

#	Article	IF	CITATIONS
37	The plasticity and stability of regulatory T cells. Nature Reviews Immunology, 2013, 13, 461-467.	10.6	456
38	Regulatory T cells and transplantation tolerance. Immunotherapy, 2013, 5, 717-731.	1.0	23
39	Loss of the TGFβ-Activating Integrin αvβ8 on Dendritic Cells Protects Mice from Chronic Intestinal Parasitic Infection via Control of Type 2 Immunity. PLoS Pathogens, 2013, 9, e1003675.	2.1	34
40	Regulatory Cells and Transplantation Tolerance. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a015545-a015545.	2.9	30
41	Secreted and Transmembrane 1A Is a Novel Co-Stimulatory Ligand. PLoS ONE, 2013, 8, e73610.	1.1	21
42	Foxp3 Expression Is Required for the Induction of Therapeutic Tissue Tolerance. Journal of Immunology, 2012, 189, 3947-3956.	0.4	43
43	A step closer to effective transplant tolerance?. Nature Medicine, 2012, 18, 664-665.	15.2	1
44	Plasticity of Foxp3+ T Cells Reflects Promiscuous Foxp3 Expression in Conventional T Cells but Not Reprogramming of Regulatory T Cells. Immunity, 2012, 36, 262-275.	6.6	534
45	Successful attenuation of humoral immunity to viral capsid and transgenic protein following AAV-mediated gene transfer with a non-depleting CD4 antibody and cyclosporine. Gene Therapy, 2012, 19, 78-85.	2.3	61
46	Activation rather than <scp>F</scp> oxp3 expression determines that <scp>TGF</scp> â€Î²â€induced regulatory <scp>T</scp> cells outâ€compete naÃ⁻ve <scp>T</scp> cells in dendritic cell clustering. European Journal of Immunology, 2012, 42, 1436-1448.	1.6	2
47	Th17 Cells Induce a Distinct Graft Rejection Response That Does Not Require IL-17A. American Journal of Transplantation, 2012, 12, 835-845.	2.6	17
48	CD73 and adenosine generation in the creation of regulatory microenvironments. Clinical and Experimental Immunology, 2012, 171, 1-7.	1.1	133
49	CD3 Monoclonal Antibodies: A First Step Towards Operational Immune Tolerance in the Clinic. Review of Diabetic Studies, 2012, 9, 372-381.	O.5	15
50	Enhanced murine contact hypersensitivity by depletion of endogenous regulatory T cells in the sensitization phase. Journal of Dermatological Science, 2011, 61, 144-147.	1.0	26
51	Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. Journal of Experimental Medicine, 2011, 208, 2043-2053.	4.2	190
52	TGF-Î ² in transplantation tolerance. Current Opinion in Immunology, 2011, 23, 660-669.	2.4	57
53	Biomarkers of Transplantation Tolerance: More Hopeful than Helpful?. Frontiers in Immunology, 2011, 2, 9.	2.2	18
54	THE ANTIBODY PROBLEM AND THE GENERATION OF MONOCLONAL ANTIBODIES. , 2011, , 197-215.		0

#	Article	IF	CITATIONS
55	Human CD3 Transgenic Mice: Preclinical Testing of Antibodies Promoting Immune Tolerance. Science Translational Medicine, 2011, 3, 68ra10.	5.8	41
56	Generation of antiâ€inflammatory adenosine byleukocytes is regulated by TGFâ€i². European Journal of Immunology, 2011, 41, 2955-2965.	1.6	148
57	Preservation of recall immunity in antiâ€CD3â€treated recent onset type 1 diabetes patients. Diabetes/Metabolism Research and Reviews, 2011, 27, 925-927.	1.7	6
58	The nuclear orphan receptor Nr4a2 induces Foxp3 and regulates differentiation of CD4+ T cells. Nature Communications, 2011, 2, 269.	5.8	180
59	Transient Epstein-Barr virus reactivation in CD3 monoclonal antibody-treated patients. Blood, 2010, 115, 1145-1155.	0.6	68
60	Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia, 2010, 53, 614-623.	2.9	286
61	Exacerbation of delayed-type hypersensitivity responses in EBV-induced gene-3 (EBI-3)-deficient mice. Immunology Letters, 2010, 128, 108-115.	1.1	28
62	Tolerogenicity is not an absolute property of a dendritic cell. European Journal of Immunology, 2010, 40, 1728-1737.	1.6	17
63	Infectious tolerance: therapeutic potential. Current Opinion in Immunology, 2010, 22, 560-565.	2.4	45
64	mTOR signalling and metabolic regulation of T cell differentiation. Current Opinion in Immunology, 2010, 22, 655-661.	2.4	78
65	Regulation of the immune response. Current Opinion in Immunology, 2010, 22, 549-551.	2.4	Ο
66	A Role for Regulatory T Cells in Acceptance of ESC-Derived Tissues Transplanted Across an Major Histocompatibility Complex Barrier A. Stem Cells, 2010, 28, 1905-1914.	1.4	43
67	Connecting the mechanisms of Tâ€cell regulation: dendritic cells as the missing link. Immunological Reviews, 2010, 236, 203-218.	2.8	62
68	Partial and transient modulation of the CD3–Tâ€cell receptor complex, elicited by lowâ€dose regimens of monoclonal antiâ€CD3, is sufficient to induce disease remission in nonâ€obese diabetic mice. Immunology, 2010, 130, 103-113.	2.0	39
69	Enhancement of humoral and cellular immunity with an antiâ€glucocorticoidâ€induced tumour necrosis factor receptor monoclonal antibody. Immunology, 2010, 130, 231-242.	2.0	23
70	Immunological Tolerance. Frontiers in Immunology, 2010, 1, 102.	2.2	4
71	A novel role for Glucocorticoid-Induced TNF Receptor Ligand (Gitrl) in early embryonic zebrafish development. International Journal of Developmental Biology, 2010, 54, 815-825.	0.3	9
72	A Novel Strategy To Reduce the Immunogenicity of Biological Therapies. Journal of Immunology, 2010, 185, 763-768.	0.4	65

#	Article	IF	CITATIONS
73	Tmem176B and Tmem176A are associated with the immature state of dendritic cells. Journal of Leukocyte Biology, 2010, 88, 507-515.	1.5	67
74	Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. Journal of Clinical Investigation, 2010, 120, 883-893.	3.9	253
75	Tolerance: an overview and perspectives. Nature Reviews Nephrology, 2010, 6, 569-576.	4.1	38
76	Pharmacokinetics and Antibody Responses to the CD3 Antibody Otelixizumab Used in the Treatment of Type 1 Diabetes. Journal of Clinical Pharmacology, 2010, 50, 1238-1248.	1.0	36
77	Robert Royston Amos (Robin) Coombs. 9 January 1921 — 25 January 2006. Biographical Memoirs of Fellows of the Royal Society, 2009, 55, 45-58.	0.1	1
78	Embryonic Stem Cells: Overcoming the Immunological Barriers to Cell Replacement Therapy. Current Stem Cell Research and Therapy, 2009, 4, 70-80.	0.6	57
79	MS4A4B Is a GITR-Associated Membrane Adapter, Expressed by Regulatory T Cells, Which Modulates T Cell Activation. Journal of Immunology, 2009, 183, 4197-4204.	0.4	58
80	Heterogeneity of natural Foxp3 ⁺ T cells: A committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1903-1908.	3.3	481
81	Generation of immunogenic dendritic cells from human embryonic stem cells without serum and feeder cells. Regenerative Medicine, 2009, 4, 513-526.	0.8	61
82	Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proceedings of the United States of America, 2009, 106, 12055-12060.	3.3	293
83	Regulatory T Cells: Context Matters. Immunity, 2009, 30, 613-615.	6.6	12
84	Alemtuzumab (CAMPATH-1H) for the Treatment of Acute Rejection in Kidney Transplant Recipients: Long-Term Follow-Up. Transplantation, 2009, 87, 1092-1095.	0.5	59
85	Immunohematopoietic stem cell transplantation in Cape Town. Hematology/ Oncology and Stem Cell Therapy, 2009, 2, 320-332.	0.6	1
86	Key Role of the GITR/GITRLigand Pathway in the Development of Murine Autoimmune Diabetes: A Potential Therapeutic Target. PLoS ONE, 2009, 4, e7848.	1.1	35
87	Regulation and Privilege in Transplantation Tolerance. Journal of Clinical Immunology, 2008, 28, 716-725.	2.0	29
88	Morbidity and mortality in rheumatoid arthritis patients with prolonged therapyâ€induced lymphopenia: Twelveâ€year outcomes. Arthritis and Rheumatism, 2008, 58, 370-375.	6.7	44
89	Reprogramming the immune system: coâ€receptor blockade as a paradigm for harnessing tolerance mechanisms. Immunological Reviews, 2008, 223, 361-370.	2.8	34
90	Tolerance can be infectious. Nature Immunology, 2008, 9, 1001-1003.	7.0	25

6

#	Article	IF	CITATIONS
91	Special regulatory T cell review: The suppression problem!. Immunology, 2008, 123, 11-12.	2.0	6
92	Fc-Disabled Anti-Mouse CD40L Antibodies Retain Efficacy in Promoting Transplantation Tolerance. American Journal of Transplantation, 2008, 8, 2265-2271.	2.6	26
93	CD8+ T-Cell Depletion and Rapamycin Synergize with Combined Coreceptor/Stimulation Blockade to Induce Robust Limb Allograft Tolerance in Mice. American Journal of Transplantation, 2008, 8, 2527-2536.	2.6	24
94	Structural basis for ligand-mediated mouse GITR activation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 641-645.	3.3	45
95	A pilot study of combination anti-cytokine and anti-lymphocyte biological therapy in rheumatoid arthritis. QJM - Monthly Journal of the Association of Physicians, 2008, 101, 299-306.	0.2	12
96	Pediatric immunohematopoietic stem cell transplantation at a tertiary care center in Cape Town. Hematology/ Oncology and Stem Cell Therapy, 2008, 1, 80-89.	0.6	2
97	Regulatory T-cells in Therapeutic Transplantation Tolerance. , 2008, , 325-333.		Ο
98	Defining and Overcoming the Immunological Barriers to Stem Cell Therapies. , 2008, , 59-80.		0
99	Targeting CD4 for the induction of dominant tolerance. , 2008, , 49-56.		Ο
100	Reprogramming the immune system. Clinical Transplants, 2008, , 351-62.	0.2	0
101	Humanized anti-CD4 monoclonal antibody therapy of autoimmune and inflammatory disease. Clinical and Experimental Immunology, 2007, 110, 158-166.	1.1	50
102	Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20920-20925.	3.3	176
103	Induction of Regulatory T Cells and Dominant Tolerance by Dendritic Cells Incapable of Full Activation. Journal of Immunology, 2007, 179, 967-976.	0.4	86
104	Expression of human GITRL on myeloid dendritic cells enhances their immunostimulatory function but does not abrogate the suppressive effect of CD4+CD25+ regulatory T cells. Journal of Leukocyte Biology, 2007, 82, 93-105.	1.5	57
105	A Key Role for TGF-Î ² Signaling to T Cells in the Long-Term Acceptance of Allografts. Journal of Immunology, 2007, 179, 3648-3654.	0.4	60
106	Regulation and privilege in transplantation. Current Opinion in Organ Transplantation, 2007, 12, 340-344.	0.8	1
107	Ectopic Transplantation of Tissues Under the Kidney Capsule. Methods in Molecular Biology, 2007, 380, 347-353.	0.4	20
108	Embryonic stem cells: protecting pluripotency from alloreactivity. Current Opinion in Immunology, 2007, 19, 596-602.	2.4	27

#	Article	IF	CITATIONS
109	SAGE Analysis of Cell Types Involved in Tolerance Induction. Methods in Molecular Biology, 2007, 380, 225-251.	0.4	1
110	Genetic Modification of Dendritic Cells Through the Directed Differentiation of Embryonic Stem Cells. Methods in Molecular Biology, 2007, 380, 59-72.	0.4	8
111	Mechanisms of Antibody Immunotherapy on Clonal Islet Reactive T Cells. Human Immunology, 2006, 67, 264-273.	1.2	20
112	Regulatory T cells in transplantation. Seminars in Immunology, 2006, 18, 111-119.	2.7	72
113	Reprogramming the Immune System Using Antibodies. , 2006, 333, 247-268.		6
114	Infectious tolerance and the long-term acceptance of transplanted tissue. Immunological Reviews, 2006, 212, 301-313.	2.8	151
115	Protection and privilege. Nature, 2006, 442, 987-988.	13.7	64
116	Immune privilege induced by regulatory T cells in transplantation tolerance. Immunological Reviews, 2006, 213, 239-255.	2.8	127
117	The window of therapeutic opportunity in multiple sclerosis. Journal of Neurology, 2006, 253, 98-108.	1.8	469
118	Co-receptor and co-stimulation blockade for mixed chimerism and tolerance without myelosuppressive conditioning. BMC Immunology, 2006, 7, 9.	0.9	28
119	Accelerated Memory Cell Homeostasis during T Cell Depletion and Approaches to Overcome It. Journal of Immunology, 2006, 176, 4632-4639.	0.4	139
120	Anti-CD45 monoclonal antibody YAML568: A promising radioimmunoconjugate for targeted therapy of acute leukemia. Journal of Nuclear Medicine, 2006, 47, 1335-41.	2.8	27
121	Critical Influence of Natural Regulatory CD25+ T Cells on the Fate of Allografts in the Absence of Immunosuppression. Transplantation, 2005, 79, 648-654.	0.5	72
122	Cell Replacement Therapy and the Evasion of Destructive Immunity. Stem Cell Reviews and Reports, 2005, 1, 159-168.	5.6	13
123	Contact Between Good Friends: What Limiting Dilution Analysis Taught Us. Scandinavian Journal of Immunology, 2005, 62, 30-32.	1.3	0
124	Myeloablative conditioning is well tolerated by older patients receiving T-cell-depleted grafts. Bone Marrow Transplantation, 2005, 36, 675-682.	1.3	17
125	Alemtuzumab (CAMPATH 1H) Induction Therapy in Cadaveric Kidney Transplantation-Efficacy and Safety at Five Years. American Journal of Transplantation, 2005, 5, 1347-1353.	2.6	213
126	Resistance of regulatory T cells to glucocorticoid-viduced TNFR family-related protein (GITR) duringPlasmodium yoelii infection. European Journal of Immunology, 2005, 35, 3516-3524.	1.6	29

#	Article	IF	CITATIONS
127	Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. European Journal of Immunology, 2005, 35, 3332-3342.	1.6	279
128	In Vivo Kinetics of GITR and GITR Ligand Expression and Their Functional Significance in Regulating Viral Immunopathology. Journal of Virology, 2005, 79, 11935-11942.	1.5	66
129	CAMPATH: from concept to clinic. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1707-1711.	1.8	110
130	Enhanced Production of IL-10 by Dendritic Cells Deficient in CIITA. Journal of Immunology, 2005, 174, 1222-1229.	0.4	56
131	CD8 + Lymphocytes Do Not Mediate Protection against Acute Superinfection 20 Days after Vaccination with a Live Attenuated Simian Immunodeficiency Virus. Journal of Virology, 2005, 79, 12264-12272.	1.5	33
132	Autoimmune Diabetes Onset Results From Qualitative Rather Than Quantitative Age-Dependent Changes in Pathogenic T-Cells. Diabetes, 2005, 54, 1415-1422.	0.3	197
133	The New Immunosuppression: Intervention at the Dendritic Cell-T-Cell Interface. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2005, 5, 397-411.	1.8	8
134	Clinical evidence of a graft-versus-Hodgkin's-lymphoma effect after reduced-intensity allogeneic transplantation. Lancet, The, 2005, 365, 1934-1941.	6.3	273
135	Embryonic stem cells: a novel source of dendritic cells for clinical applications. International Immunopharmacology, 2005, 5, 13-21.	1.7	31
136	Dominant tolerance: activation thresholds for peripheral generation of regulatory T cells. Trends in Immunology, 2005, 26, 130-135.	2.9	63
137	Insulin Needs after CD3-Antibody Therapy in New-Onset Type 1 Diabetes. New England Journal of Medicine, 2005, 352, 2598-2608.	13.9	1,028
138	Neutralizing Tumor Necrosis Factor Activity Leads to Remission in PatientsWith Refractory Noninfectious Posterior Uveitis. JAMA Ophthalmology, 2004, 122, 845.	2.6	64
139	Generation of Anergic and Regulatory T Cells following Prolonged Exposure to a Harmless Antigen. Journal of Immunology, 2004, 172, 5900-5907.	0.4	80
140	IL-10-Conditioned Dendritic Cells, Decommissioned for Recruitment of Adaptive Immunity, Elicit Innate Inflammatory Gene Products in Response to Danger Signals. Journal of Immunology, 2004, 172, 2201-2209.	0.4	65
141	Exploiting Tolerance Processes in Transplantation. Science, 2004, 305, 209-212.	6.0	78
142	Induction of <i>foxP3</i> + Regulatory T Cells in the Periphery of T Cell Receptor Transgenic Mice Tolerized to Transplants. Journal of Immunology, 2004, 172, 6003-6010.	0.4	388
143	Donor-specific transplantation tolerance: The paradoxical behavior of CD4+CD25+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10122-10126.	3.3	115
144	Induction of Immunological Tolerance/Hyporesponsiveness in Baboons with a Nondepleting CD4 Antibody. Journal of Immunology, 2004, 173, 4715-4723.	0.4	49

#	Article	IF	CITATIONS
145	Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. International Immunology, 2004, 16, 1391-1401.	1.8	260
146	Radiotherapy-based conditioning is effective immunosuppression for patients undergoing transplantation with T-cell depleted stem cell grafts for severe aplasia. Cytotherapy, 2004, 6, 450-456.	0.3	7
147	Campath-1 Abs â€~in the bag' for hematological malignancies: the Cape Town experience. Cytotherapy, 2004, 6, 172-181.	0.3	15
148	Incidence and outcome of adenovirus disease in transplant recipients after reduced-intensity conditioning with alemtuzumab. Biology of Blood and Marrow Transplantation, 2004, 10, 186-194.	2.0	93
149	Favorable effect on acute and chronic graft-versus-host disease with cyclophosphamide and in vivo anti-CD52 monoclonal antibodies for marrow transplantation from HLA-identical sibling donors for acquired aplastic anemia. Biology of Blood and Marrow Transplantation, 2004, 10, 867-876.	2.0	47
150	Regulatory T cells and organ transplantation. Seminars in Immunology, 2004, 16, 119-126.	2.7	160
151	Alemtuzumab (Campath-1H) in allogeneic stem cell transplantation: where do we go from here?. Transplantation Proceedings, 2004, 36, 1225-1227.	0.3	28
152	Embryonic stem cells and the challenge of transplantation tolerance. Trends in Immunology, 2004, 25, 465-470.	2.9	73
153	Blood concentrations of alemtuzumab and antiglobulin responses in patients with chronic lymphocytic leukemia following intravenous or subcutaneous routes of administration. Blood, 2004, 104, 948-955.	0.6	175
154	Induction of dominant transplantation tolerance by an altered peptide ligand of the male antigen Dby. Journal of Clinical Investigation, 2004, 113, 1754-1762.	3.9	36
155	Antibody-Induced Transplantation Tolerance: The Role of Dominant Regulation. Immunologic Research, 2003, 28, 181-192.	1.3	26
156	The new immunosuppression. Current Opinion in Chemical Biology, 2003, 7, 476-480.	2.8	14
157	Dominant transplantation tolerance. Current Opinion in Immunology, 2003, 15, 499-506.	2.4	47
158	Regulatory T cells and dendritic cells in transplantation tolerance: molecular markers and mechanisms. Immunological Reviews, 2003, 196, 109-124.	2.8	129
159	T-cell depletion with Campath-1H â€~in the bag' for matched related allogeneic peripheral blood stem cell transplantation is associated with reduced graft-versus-host disease, rapid immune constitution and improved survival. British Journal of Haematology, 2003, 121, 109-118.	1.2	54
160	T- and B-cell immune reconstitution and clinical outcome in patients with multiple myeloma receiving T-cell-depleted, reduced-intensity allogeneic stem cell transplantation with an alemtuzumab-containing conditioning regimen followed by escalated donor ly. British Journal of Haematology, 2003, 123, 309-322.	1.2	44
161	The new immunosuppression: just kill the T cell. Nature Medicine, 2003, 9, 1259-1260.	15.2	12
162	Regulatory T cells in the induction and maintenance of peripheral transplantation tolerance.	0.8	36

Transplant International, 2003, 16, 66-75.

#	Article	IF	CITATIONS
163	Development and clinical use of CAMPATH® 1H. Transplantation Reviews, 2003, 17, S5-S7.	1.2	3
164	Reduced-intensity transplantation with in vivo T-cell depletion and adjuvant dose-escalating donor lymphocyte infusions for chemotherapy-sensitive myeloma: Limited efficacy of graft-versus-tumor activity. Biology of Blood and Marrow Transplantation, 2003, 9, 257-265.	2.0	89
165	Serial analysis of gene expression provides new insights into regulatory T cells. Seminars in Immunology, 2003, 15, 209-214.	2.7	32
166	Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15059-15064.	3.3	328
167	Stable lines of genetically modified dendritic cells from mouse embryonic stem cells. Transplantation, 2003, 76, 606-608.	0.5	21
168	Probing Dendritic Cell Function by Guiding the Differentiation of Embryonic Stem Cells. Methods in Enzymology, 2003, 365, 169-186.	0.4	18
169	Reconstitution of the Epstein-Barr virus–specific cytotoxic T-lymphocyte response following T-cell–depleted myeloablative and nonmyeloablative allogeneic stem cell transplantation. Blood, 2003, 102, 839-842.	0.6	61
170	Regulatory T cells in the induction and maintenance of peripheral transplantation tolerance. Transplant International, 2003, 16, 66-75.	0.8	22
171	The Role of Sp1 and NF-Î⁰B in Regulating CD40 Gene Expression. Journal of Biological Chemistry, 2002, 277, 8890-8897.	1.6	65
172	Regulatory T Cells Overexpress a Subset of Th2 Gene Transcripts. Journal of Immunology, 2002, 168, 1069-1079.	0.4	164
173	Both CD4+CD25+ and CD4+CD25â^' Regulatory Cells Mediate Dominant Transplantation Tolerance. Journal of Immunology, 2002, 168, 5558-5565.	0.4	357
174	Identification of Regulatory T Cells in Tolerated Allografts. Journal of Experimental Medicine, 2002, 195, 1641-1646.	4.2	532
175	Immune reconstitution at 6 months following t-cell depleted hematopoietic stem cell transplantation is predictive for treatment outcome. Transplantation, 2002, 74, 1551-1559.	0.5	52
176	High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. Blood, 2002, 99, 4357-4363.	0.6	349
177	Limiting transplantation-related mortality following unrelated donor stem cell transplantation by using a nonmyeloablative conditioning regimen. Blood, 2002, 99, 1071-1078.	0.6	333
178	Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood, 2002, 100, 768-773.	0.6	472
179	Morbidity not increased in rheumatoid arthritis patient with profound lymphopenia following CD4 monoclonal antibody therapy: Comment on the article by Isaacs et al. Arthritis and Rheumatism, 2002, 46, 1973-1974.	6.7	0
180	Reprogramming the immune system. Immunological Reviews, 2002, 185, 227-235.	2.8	31

#	Article	IF	CITATIONS
181	Respiratory virus infections in transplant recipients after reduced-intensity conditioning with Campath-1H: high incidence but low mortality. British Journal of Haematology, 2002, 119, 1125-1132.	1.2	74
182	Alemtuzumab (Campath-1H) for treatment of lymphoid malignancies in the age of nonmyeloablative conditioning?. Bone Marrow Transplantation, 2002, 30, 797-804.	1.3	38
183	Transplantation—caught in the crossfire!. Nature Immunology, 2002, 3, 803-804.	7.0	2
184	Dominant transplantation tolerance impairs CD8+ T cell function but not expansion. Nature Immunology, 2002, 3, 1208-1213.	7.0	157
185	A Personal History of the CAMPATH-1H Antibody. Medical Oncology, 2002, 19, S03-S10.	1.2	46
186	The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model. Journal of General Virology, 2002, 83, 2833-2844.	1.3	67
187	In vivo CAMPATH-1H prevents GvHD following nonmyeloablative stem-cell transplantation. Cytotherapy, 2001, 3, 197-201.	0.3	47
188	Therapeutic aspects of tolerance. Current Opinion in Pharmacology, 2001, 1, 392-397.	1.7	14
189	Regulating the Immune Response to Transplants. Immunity, 2001, 14, 399-406.	6.6	222
190	Requirements for the promotion of allogeneic engraftment by anti-CD154 (anti-CD40L) monoclonal antibody under nonmyeloablative conditions. Blood, 2001, 98, 467-474.	0.6	93
191	The effect of treatment with Campath-1H in patients with autoimmune cytopenias. British Journal of Haematology, 2001, 114, 891-898.	1.2	151
192	Therapeutic approaches for transplantation. Current Opinion in Immunology, 2001, 13, 606-610.	2.4	30
193	The role of CD4+ T-cell subsets in determining transplantation rejection or tolerance. Immunological Reviews, 2001, 182, 164-179.	2.8	121
194	Morbidity and mortality in rheumatoid arthritis patients with prolonged and profound therapy-induced lymphopenia. Arthritis and Rheumatism, 2001, 44, 1998-2008.	6.7	75
195	Comparison of allogeneic T cell-depleted peripheral blood stem cell and bone marrow transplantation: effect of stem cell source on short- and long-term outcome. Bone Marrow Transplantation, 2001, 27, 1053-1058.	1.3	29
196	Excessive T cell depletion of peripheral blood stem cells has an adverse effect upon outcome following allogeneic stem cell transplantation. Bone Marrow Transplantation, 2001, 28, 827-834.	1.3	35
197	Approaching Tolerance in Transplantation. International Archives of Allergy and Immunology, 2001, 126, 11-22.	0.9	6
198	Regulation of CD40 function by its isoforms generated through alternative splicing. Proceedings of the United States of America, 2001, 98, 1751-1756.	3.3	132

#	Article	IF	CITATIONS
199	Appropriate targets for monoclonal antibodies in the induction of transplantation tolerance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 659-663.	1.8	5
200	Extrathymic signals regulate the onset of T cell repertoire selection. European Journal of Immunology, 2000, 30, 1948-1956.	1.6	10
201	Preliminary experience of allogeneic stem cell transplantation for lymphoproliferative disorders using BEAM-CAMPATH conditioning: an effective regimen with low procedure-related toxicity. British Journal of Haematology, 2000, 108, 754-760.	1.2	65
202	Dendritic cells and prospects for transplantation tolerance. Current Opinion in Immunology, 2000, 12, 528-535.	2.4	94
203	CD52 antibodies for prevention of graft-versus-host disease and graft rejection following transplantation of allogeneic peripheral blood stem cells. Bone Marrow Transplantation, 2000, 26, 69-76.	1.3	149
204	The effect of the serotherapy regimen used and the marrow cell dose received on rejection, graft-versus-host disease and outcome following unrelated donor bone marrow transplantation for leukaemia. Bone Marrow Transplantation, 2000, 25, 411-417.	1.3	59
205	Directed differentiation of dendritic cells from mouse embryonic stem cells. Current Biology, 2000, 10, 1515-1518.	1.8	131
206	In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood, 2000, 96, 2419-2425.	0.6	483
207	Cutting Edge: Anti-CD154 Therapeutic Antibodies Induce Infectious Transplantation Tolerance. Journal of Immunology, 2000, 165, 4783-4786.	0.4	195
208	From Laboratory to Clinic. Methods in Molecular Medicine, 2000, 40, 243-266.	0.8	22
209	Prospects for the Application of Antibodies in Medicine. Methods in Molecular Medicine, 2000, 40, 63-72.	0.8	1
210	Campath-1H therapy in refractory ocular inflammatory disease. British Journal of Ophthalmology, 2000, 84, 107-109.	2.1	105
211	Posttranscriptional Regulation of IL-10 Gene Expression Through Sequences in the 3â€2-Untranslated Region. Journal of Immunology, 2000, 165, 292-296.	0.4	150
212	IL-10 Gene Expression Is Controlled by the Transcription Factors Sp1 and Sp3. Journal of Immunology, 2000, 165, 286-291.	0.4	231
213	Impact on T-cell depletion and CD34+ cell recovery using humanised CD52 monoclonal antibody (CAMPATH-1H) in BM and PSBC collections; comparison with CAMPATH-1M and CAMPATH-1G. Cytotherapy, 2000, 2, 5-14.	0.3	21
214	IMMUNE RECONSTITUTION AFTER ALLOGENEIC BONE MARROW TRANSPLANTATION DEPLETED OF T CELLS. Transplantation, 2000, 69, 1341-1347.	0.5	62
215	HIGH DOSE BONE MARROW TRANSPLANTATION INDUCES DELETION OF ANTIGEN-SPECIFIC T CELLS IN A FAS-INDEPENDENT MANNER1. Transplantation, 2000, 69, 1676-1682.	0.5	6
216	DOMINANT TOLERANCE AND LINKED SUPPRESSION INDUCED BY THERAPEUTIC ANTIBODIES DO NOT DEPEND ON FAS-FASL INTERACTIONS1. Transplantation, 2000, 69, 1683-1689.	0.5	25

#	Article	IF	CITATIONS
217	In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood, 2000, 96, 2419-2425.	0.6	6
218	High Level Transcription of the Complement Regulatory Protein CD59 Requires an Enhancer Located in Intron 1. Journal of Biological Chemistry, 1999, 274, 710-716.	1.6	17
219	Optimism after much pessimism: what next?. Current Opinion in Immunology, 1999, 11, 589-591.	2.4	23
220	Transplantation tolerance—where do we stand?. Nature Medicine, 1999, 5, 1245-1248.	15.2	89
221	Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Therapy, 1999, 6, 939-943.	2.3	137
222	Dominant regulation. Immunologic Research, 1999, 20, 1-14.	1.3	11
223	Structure and chromosomal location of mouse and human CD52 genes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1446, 334-340.	2.4	22
224	Isolation, molecular characterization, and tissue-specific expression of ECP-51 and ECP-54 (TIP49), two homologous, interacting erythroid cytosolic proteins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1446, 365-370.	2.4	25
225	Engraftment of marrow allografts treated with Campath-1 monoclonal antibodies. Experimental Hematology, 1999, 27, 1210-1218.	0.2	29
226	CD4 T cells can reject major histocompatibility complex class I-incompatible skin grafts. European Journal of Immunology, 1999, 29, 156-167.	1.6	28
227	Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet, The, 1999, 354, 1691-1695.	6.3	447
228	Anti-adhesion Molecule Therapy as an Interventional Strategy. Clinical Immunology, 1999, 93, 93-106.	1.4	30
229	EX VIVO DEPLETION OF T CELLS FROM BONE MARROW GRAFTS WITH CAMPATH-1 IN ACUTE LEUKEMIA. Transplantation, 1999, 67, 620-626.	0.5	42
230	EPSTEIN-BARR VIRUS (EBV) ASSOCIATED B-CELL LYMPHOPROLIFERATIVE DISEASE FOLLOWING HLA IDENTICAL SIBLING MARROW TRANSPLANTATION FOR APLASTIC ANAEMIA IN A PATIENT WITH AN EBV SERONEGATIVE DONOR. Transplantation, 1999, 67, 1373-1375.	0.5	8
231	ANTI-GLOBULIN RESPONSES TO RAT AND HUMANIZED CAMPATH-1 MONOCLONAL ANTIBODY USED TO TREAT TRANSPLANT REJECTION1. Transplantation, 1999, 68, 1417-1419.	0.5	52
232	CAMPATH IH ALLOWS LOW-DOSE CYCLOSPORINE MONOTHERAPY IN 31 CADAVERIC RENAL ALLOGRAFT RECIPIENTS. Transplantation, 1999, 68, 1613-1616.	0.5	281
233	PHASE I STUDY OF AN ENGINEERED AGLYCOSYLATED HUMANIZED CD3 ANTIBODY IN RENAL TRANSPLANT REJECTION1. Transplantation, 1999, 68, 1632-1637.	0.5	123
234	A Humanised Therapeutic CD4 mAb Inhibits TCR-Induced IL-2, IL-4, and IL-10 Secretion and Expression of CD25, CD40L, and CD69. Cellular Immunology, 1998, 185, 101-113.	1.4	15

#	Article	IF	CITATIONS
235	Double T cell depletion of bone marrow using sequential positive and negative cell immunoaffinity or CD34+ cell selection followed by Campath-1M; effect on CD34+ cells and progenitor cell recoveries. Bone Marrow Transplantation, 1998, 22, 117-124.	1.3	9
236	Infectious tolerance. Current Opinion in Immunology, 1998, 10, 518-524.	2.4	225
237	Apoptosis: potential for disease therapies. Trends in Immunology, 1998, 19, 291-293.	7.5	25
238	Prope tolerance, perioperative campath 1H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet, The, 1998, 351, 1701-1702.	6.3	409
239	Semi-Specific Immuno-Absorption and Monoclonal Antibody Therapy in ANCA Positive Vasculitis: Experience in Four Cases. Autoimmunity, 1998, 28, 163-171.	1.2	18
240	The Human Interleukin 18 GenelL18Maps to 11q22.2–q22.3, Closely Linked to the DRD2 Gene Locus and Distinct from Mapped IDDM Loci. Genomics, 1998, 51, 161-163.	1.3	93
241	Neutralizing TNF-alpha Activity Modulates T-cell Phenotype and Function in Experimental Autoimmune Uveoretinitis. Journal of Autoimmunity, 1998, 11, 255-264.	3.0	103
242	Crystal structures of a rat anti-CD52 (CAMPATH-1) therapeutic antibody fab fragment and its humanized counterpart 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1998, 284, 85-99.	2.0	30
243	HOW DO MONOCLONAL ANTIBODIES INDUCE TOLERANCE? A Role for Infectious Tolerance?. Annual Review of Immunology, 1998, 16, 619-644.	9.5	227
244	Limiting Dilution Analysis. , 1998, , 1584-1586.		4
245	Improving the Outcome of Bone Marrow Transplantation by Using CD52 Monoclonal Antibodies to Prevent Graft-Versus-Host Disease and Graft Rejection. Blood, 1998, 92, 4581-4590.	0.6	183
246	Risks of Developing Epstein-Barr Virus–Related Lymphoproliferative Disorders After T-Cell–Depleted Marrow Transplants. Blood, 1998, 91, 3079-3083.	0.6	153
247	Improving the Outcome of Bone Marrow Transplantation by Using CD52 Monoclonal Antibodies to Prevent Graft-Versus-Host Disease and Graft Rejection. Blood, 1998, 92, 4581-4590.	0.6	3
248	Tolerance Induction with CD4 Monoclonal Antibodies. Novartis Foundation Symposium, 1998, 215, 146-158.	1.2	1
249	Autologous Transplantation with CD52 Monoclonal Antibody-Purged Marrow for Acute Lymphoblastic Leukemia: Long-Term Follow-Up. Leukemia and Lymphoma, 1997, 25, 479-486.	0.6	19
250	Fas-Independent Apoptosis of Activated T Cells Induced by Antibodies to the HLA Class I α1 Domain. Blood, 1997, 90, 3629-3639.	0.6	42
251	Use of Ceprate CD34-positive selection system for depletion of T cells in allogeneic transplantation. Bone Marrow Transplantation, 1997, 20, 709-710.	1.3	3
252	In vivo â€~Purging' of residual disease in CLL with Campath″H. British Journal of Haematology, 1997, 97, 669-672.	1.2	92

#	Article	IF	CITATIONS
253	Sustained remission of severe resistant autoimmune neutropenia with Campath″H. British Journal of Haematology, 1997, 97, 306-308.	1.2	40
254	T cell sensitivity to HLA class I-mediated apoptosis is dependent on interleukin-2 and interleukin-4. European Journal of Immunology, 1997, 27, 495-499.	1.6	19
255	A role for Th2 cytokines in the suppression of CD8+ T cell-mediated graft rejection. European Journal of Immunology, 1997, 27, 1663-1670.	1.6	35
256	STRAIN VARIATION IN SUSCEPTIBILITY TO MONOCLONAL ANTIBODY-INDUCED TRANSPLANTATION TOLERANCE1. Transplantation, 1997, 63, 1570-1573.	0.5	27
257	CAMPATH-1H in multiple sclerosis. Multiple Sclerosis Journal, 1996, 1, 357-365.	1.4	57
258	Structure and chromosomal location of the mouse interleukin-12 p35 and p40 subunit genes. European Journal of Immunology, 1996, 26, 1222-1227.	1.6	76
259	Unrelated donor bone marrow transplantation for children with relapsed acute lymphoblastic leukaemia in second complete remission. British Journal of Haematology, 1996, 94, 574-578.	1.2	152
260	A therapeutic human IgG4 monoclonal antibody that depletes target cells in humans. Clinical and Experimental Immunology, 1996, 106, 427-433.	1.1	89
261	Mechanisms of Peripheral Tolerance and Suppression Induced by Monoclonal Antibodies to CD4 and CD8. Immunological Reviews, 1996, 149, 5-33.	2.8	191
262	Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain, 1996, 119, 225-237.	3.7	249
263	CD4 mAbs PREVENT PROGRESSION OF ALLOACTIVATED CD4+ T CELLS INTO THE S PHASE OF THE CELL CYCLE WITHOUT INTERFERING WITH EARLY ACTIVATION SIGNALS1. Transplantation, 1996, 62, 1136-1143.	0.5	8
264	AMPLIFICATION OF NATURAL REGULATORY IMMUNE MECHANISMS FOR TRANSPLANTATION TOLERANCE1. Transplantation, 1996, 62, 1200-1206.	0.5	145
265	TOLERANCE AND SUPPRESSION IN A PRIMED IMMUNE SYSTEM1. Transplantation, 1996, 62, 1614-1621.	0.5	77
266	Mechanism of first-dose cytokine-release syndrome by CAMPATH 1-H: involvement of CD16 (FcgammaRIII) and CD11a/CD18 (LFA-1) on NK cells Journal of Clinical Investigation, 1996, 98, 2819-2826.	3.9	227
267	THE EFFECT OF AGLYCOSYLATION ON THE IMMUNOGENICITY OF A HUMANIZED THERAPEUTIC CD3 MONOCLONAL ANTIBODY. Transplantation, 1995, 60, 847-853.	0.5	32
268	T-cell-depleted allogeneic bone marrow transplantation for acute leukaemia using Campath-1 antibodies and post-transplant administration of donor's peripheral blood lymphocytes for prevention of relapse. British Journal of Haematology, 1995, 89, 506-515.	1.2	152
269	Tolerance induction in the adult: â€~danger' at Le Bischenberg. Trends in Immunology, 1995, 16, 121-123.	7.5	2
270	Monoclonal antibody therapy of chronic intraocular inflammation using Campath-1H British Journal of Ophthalmology, 1995, 79, 1054-1055.	2.1	42

#	Article	IF	CITATIONS
271	In vivo transfer of CPI-linked complement restriction factors from erythrocytes to the endothelium. Science, 1995, 269, 89-92.	6.0	252
272	Prevention of immune-mediated corneal graft destruction with the anti-lymphocyte monoclonal antibody, CAMPATH-1H. Eye, 1995, 9, 564-569.	1.1	51
273	Human CD59 expressed in transgenic mouse hearts inhibits the activation of complement. Transplant Immunology, 1995, 3, 305-312.	0.6	23
274	Depletion of CD4 ⁺ and CD8 ⁺ Cells Eliminates Immunologic Memory of Thyroiditogenicity in Murine Experimental Autoimmune Thyroiditis. Autoimmunity, 1994, 19, 161-168.	1.2	17
275	CAMPATH-1 Monoclonal Antibodies in Bone Marrow Transplantation. Stem Cells and Development, 1994, 3, 15-31.	1.0	69
276	Mechanisms in CD4 antibody-mediated transplantation tolerance: kinetics of induction, antigen dependency and role of regulatory T cells. European Journal of Immunology, 1994, 24, 2383-2392.	1.6	163
277	What can be done to prevent graft versus host disease?. Current Opinion in Immunology, 1994, 6, 777-783.	2.4	17
278	Immunosuppression of canine renal allograft recipients by CD4 and CD8 monoclonal antibodies. Tissue Antigens, 1994, 43, 155-162.	1.0	14
279	Isolation and expression of cDNA encoding the canine CD4 and CD8α antigens. Tissue Antigens, 1994, 43, 184-188.	1.0	12
280	Preliminary evidence from magnetic resonance imaging for reduction in disease activity after lymphocyte depletion in multiple sclerosis. Lancet, The, 1994, 344, 298-301.	6.3	189
281	The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. European Journal of Immunology, 1993, 23, 403-411.	1.6	213
282	Active suppression induced by anti-CD4. European Journal of Immunology, 1993, 23, 965-968.	1.6	39
283	Structural motifs involved in human IgG antibody effector functions. European Journal of Immunology, 1993, 23, 1098-1104.	1.6	139
284	The use of monoclonal antibodies to achieve immunological tolerance. Trends in Immunology, 1993, 14, 247-251.	7.5	83
285	Monoclonal antibodies for the induction of transplantation tolerance. Current Opinion in Immunology, 1993, 5, 753-758.	2.4	19
286	CAMPATH-1 monoclonal antibody therapy in severe refractory autoimmune thrombocytopenic purpura. British Journal of Haematology, 1993, 84, 542-544.	1.2	54
287	Prevention of Diabetes but not Insulitis in NOD Mice Injected with Antibody to CD4. Journal of Autoimmunity, 1993, 6, 301-310.	3.0	27
288	Efficient complement-mediated lysis of cells containing the CAMPATH-1 (CDw52) antigen. Molecular Immunology, 1993, 30, 1089-1096.	1.0	108

#	Article	IF	CITATIONS
289	Long-term remission of intractable systemic vasculitis with monoclonal antibody therapy. Lancet, The, 1993, 341, 1620-1622.	6.3	204
290	The use of monoclonal antibodies to achieve immunological tolerance. Trends in Pharmacological Sciences, 1993, 14, 143-148.	4.0	7
291	Control of immune-mediated disease of the central nervous system with monoclonal (CD4-specific) antibodies. Journal of Neuroimmunology, 1993, 45, 1-14.	1.1	52
292	"Infectious" transplantation tolerance. Science, 1993, 259, 974-977.	6.0	830
293	Tolerance Induction in the Peripheral Immune System. , 1993, , 149-155.		3
294	Monoclonal antibodies as agents to reinducetolerance in autoimmunity. Journal of Autoimmunity, 1992, 5, 93-102.	3.0	48
295	Humanised monoclonal antibody therapy for rheumatoid arthritis. Lancet, The, 1992, 340, 748-752.	6.3	309
296	Gene structure of human CD59 and demonstration that discrete mRNAs are generated by alternative polyadenylation. Journal of Molecular Biology, 1992, 227, 971-976.	2.0	51
297	Reprogramming the Immune System for Peripheral Tolerance with CD4 and CD8 Monoclonal Antibodies. Immunological Reviews, 1992, 129, 165-201.	2.8	121
298	Therapeutic immunosuppression of T cells. Current Opinion in Biotechnology, 1992, 3, 668-674.	3.3	1
299	The CD59 antigen ―a multifunctional molecule. Tissue Antigens, 1992, 40, 213-220.	1.0	41
300	Tolerance in the mouse to major histocompatibility complex-mismatched heart allografts, and to rat heart xenografts, using monoclonal antibodies to CD4 and CD8. European Journal of Immunology, 1992, 22, 805-810.	1.6	130
301	The use of a non-depleting anti-CD4 monoclonal antibody to re-establish tolerance to Î ² cells in NOD mice. European Journal of Immunology, 1992, 22, 1913-1918.	1.6	112
302	Classical transplantation tolerance in the adult: the interaction between myeloablation and immunosuppression. European Journal of Immunology, 1992, 22, 2825-2830.	1.6	55
303	The development of insulin-dependent diabetes mellitus in non-obese diabetic mice: the role of CD4+ and CD8+ T cells. Biochemical Society Transactions, 1991, 19, 187-191.	1.6	14
304	Suppression in murine experimental autoimmune thyroiditis: In vivo inhibition of CD4+ T cell-mediated resistance by a nondepleting rat CD4 monoclonal antibody. Cellular Immunology, 1991, 138, 185-196.	1.4	26
305	Transfection of human CD59 complementary DNA into rat cells confers resistance to human complement. European Journal of Immunology, 1991, 21, 847-850.	1.6	33
306	Characterization of the CAMPATH-1 (CDw52) antigen: biochemical analysis and cDNA cloning reveal an unusually small peptide backbone. European Journal of Immunology, 1991, 21, 1677-1684.	1.6	165

#	Article	IF	CITATIONS
307	A humanized monovalent CD3 antibody which can activate homologous complement. European Journal of Immunology, 1991, 21, 2717-2725.	1.6	48
308	Reshaping a therapeutic CD4 antibody Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4181-4185.	3.3	88
309	The CAMPATHâ€l antigen (CDw52). Tissue Antigens, 1990, 35, 118-127.	1.0	328
310	Characterization of effector cells of graft vs leukemia following allogeneic bone marrow transplantation in mice inoculated with murine B-cell leukemia. Cancer Immunology, Immunotherapy, 1990, 31, 236-242.	2.0	42
311	Complement activation by immunoglobulin does not depend solely on C1q binding. European Journal of Immunology, 1990, 20, 277-281.	1.6	46
312	Induction of tolerance in peripheral T cells with monoclonal antibodies. European Journal of Immunology, 1990, 20, 2737-2745.	1.6	272
313	The induction of skin graft tolerance in major histocompatibility complex-mismatched or primed recipients: primed T cells can be tolerized in the periphery with anti-CD4 and anti-CD8 antibodies. European Journal of Immunology, 1990, 20, 2747-2755.	1.6	151
314	Remission Induction in Patients with Lymphoid Malignancies Using Unconjugated CAMPATH-1 Monoclonal Antibodies. Leukemia and Lymphoma, 1990, 2, 179-193.	0.6	67
315	Monoclonal-Antibody Therapy in Systemic Vasculitis. New England Journal of Medicine, 1990, 323, 250-254.	13.9	246
316	The involvement of Ly 2+ T cells in beta cell destruction. Journal of Autoimmunity, 1990, 3, 101-109.	3.0	46
317	Induction of classical transplantation tolerance in the adult Journal of Experimental Medicine, 1989, 169, 779-794.	4.2	311
318	CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells Journal of Experimental Medicine, 1989, 170, 637-654.	4.2	618
319	Beneficial effect of monoclonal antibody to interleukin 2 receptor on activated T cells in rheumatoid arthritis Annals of the Rheumatic Diseases, 1989, 48, 428-429.	0.5	58
320	The immunogenicity of chimeric antibodies Journal of Experimental Medicine, 1989, 170, 2153-2157.	4.2	170
321	Depletion of L3T4+ and Lyt-2+ cells by rat monoclonal antibodies alters the development of adoptively transferred experimental autoimmune thyroiditis. Cellular Immunology, 1989, 122, 377-390.	1.4	55
322	Peripheral tolerance mechanisms prevent the development of autoreactive T cells in chimeras grafted with two minor incompatible thymuses. European Journal of Immunology, 1989, 19, 111-117.	1.6	45
323	The improved lytic function andin vivo efficacy of monovalent monoclonal CD3 antibodies. European Journal of Immunology, 1989, 19, 381-388.	1.6	42
324	(5) Induction of remission in systemic vasculitis with monoclonal antibody Campath-1H. British Journal of Dermatology, 1989, 121, 72-75.	1.4	0

#	Article	IF	CITATIONS
325	Resistance to experimental autoimmune thyroiditis: L3T4+ cells as mediators of both thyroglobulin-activated and TSH-induced suppression. Clinical Immunology and Immunopathology, 1989, 51, 38-54.	2.1	63
326	COMPARISON OF CAMPATH-1 PLUS COMPLEMENT, ANTI-T CELL RICIN A CHAIN IMMUNOTOXIN, AND SOYBEAN AGGLUTININ ALONE OR IN COMBINATION WITH SHEEP ERYTHROCYTES OR IMMUNOMAGNETIC BEADS. Transplantation, 1989, 47, 984-988.	0.5	50
327	A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proceedings of the United States of America, 1989, 86, 6709-6713.	3.3	139
328	A Theoretical Framework for Self-tolerance and its Relevance to Therapy of Autoimmune Disease. , 1989, , 127-133.		0
329	Sequence of a rat immunoglobulin y2c heavy chain constant region cDNA: extensive homology to mouse y3. European Journal of Immunology, 1988, 18, 317-319.	1.6	13
330	Mechanisms of monoclonal antibody-facilitated tolerance induction: a possible role for the CD4 (L3T4) and CD11a (LFA-1) molecules in self-non-self discrimination. European Journal of Immunology, 1988, 18, 1079-1088.	1.6	120
331	IMPORTANCE OF ANTIGEN SPECIFICITY FOR COMPLEMENT-MEDIATED LYSIS BY MONOCLONAL ANTIBODIES. European Journal of Immunology, 1988, 18, 1507-1514.	1.6	139
332	The potential of hybrid antibodies secreted by hybrid-hybridomas in tumour therapy. International Journal of Cancer, 1988, 41, 15-17.	2.3	15
333	Reshaping human antibodies for therapy. Nature, 1988, 332, 323-327.	13.7	1,543
334	Human monoclonal IgG isotypes differ in complement activating function at the level of C4 as well as C1q Journal of Experimental Medicine, 1988, 168, 127-142.	4.2	255
335	Delay in onset of insulitis in NOD mice following a single injection of CD 4 and CD8 antibodies. Journal of Autoimmunity, 1988, 1, 91-96.	3.0	19
336	A theoretical framework for self-tolerance and its relevance to therapy of autoimmune disease. Journal of Autoimmunity, 1988, 1, 623-629.	3.0	20
337	Monoclonal Antibodies for Organ Transplantation: Prospects for the Future. American Journal of Kidney Diseases, 1988, 11, 154-158.	2.1	9
338	DELAYED ALLOGRAFT REJECTION IN PRIMATES TREATED WITH ANTI-IL-2 RECEPTOR MONOCLONAL ANTIBODY CAMPATH-6. Transplantation, 1988, 45, 226-228.	0.5	19
339	THE REPOPULATION CAPACITY OF BONE MARROW GRAFTS FOLLOWING PRETREATMENT WITH MONOCLONAL ANTIBODIES AGAINST T LYMPHOCYTES IN RHESUS MONKEYS. Transplantation, 1988, 45, 301-306.	0.5	37
340	T CELL DEPLETION WITH CAMPATH-1 IN ALLOGENEIC BONE MARROW TRANSPLANTATION. Transplantation, 1988, 45, 753-758.	0.5	173
341	Universal bispecific antibody for targeting tumor cells for destruction by cytotoxic T cells Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 7719-7723.	3.3	32
342	Monoclonal Antibodies for Immunosuppression. Chemical Immunology and Allergy, 1988, 45, 16-30.	1.7	1

#	Article	IF	CITATIO
343	BLOCKING OF CYTOTOXIC T CELL FUNCTION BY MONOCLONAL ANTIBODIES AGAINST THE CD45 ANTIGEN		

#	Article	IF	CITATIONS
361	THERAPEUTIC POTENTIAL OF MONOCLONAL ANTIBODIES TO THE LEUKOCYTE-COMMON ANTIGEN. Transplantation, 1985, 40, 538-544.	0.5	39
362	Reactivity of rat monoclonal antibody CAMPATH-1 with human leukaemia cells and its possible application for autologous bone marrow transplantation. British Journal of Haematology, 1985, 60, 41-48.	1.2	69
363	Therapeutic Potential of Monoclonal Antibodies to the Leucocyte Common Antigen. , 1985, 186, 805-812.		3
364	Interaction of Rat Monoclonal Antibodies with Human Killer Cells. , 1985, 186, 797-803.		4
365	Limiting dilution analysis of the cells of immune system I. The clonal basis of the immune response. Trends in Immunology, 1984, 5, 265-268.	7.5	200
366	Limiting dilution analysis of cells of the immune system II: What can be learnt?. Trends in Immunology, 1984, 5, 295-298.	7.5	38
367	Therapeutic potential of monovalent monoclonal antibodies. Nature, 1984, 308, 460-462.	13.7	86
368	Self tolerance is H–2-restricted. Nature, 1984, 308, 738-741.	13.7	113
369	Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature, 1984, 312, 548-551.	13.7	903
370	Allosuppression: evidence for the involvement of both "noncytotoxic―and cytotoxic T cells. European Journal of Immunology, 1984, 14, 645-651.	1.6	2
371	Monocytic origin of foam cells in human atherosclerotic plaques. Atherosclerosis, 1984, 53, 265-271.	0.4	196
372	Detection of monoclonal antibodies against cell surface antigens: the use of antiglobulins coupled to red blood cells. Journal of Immunological Methods, 1984, 66, 81-87.	0.6	12
373	Immunohistological screening in the selection of monoclonal antibodies: the use of isotype-specific antiglobulins. Journal of Immunological Methods, 1984, 69, 207-214.	0.6	30
374	Interaction of rat monoclonal antibodies with human killer cells (K cells). Biochemical Society Transactions, 1984, 12, 877-878.	1.6	1
375	Segregation of mouse hemopoietic progenitor cells using the monoclonal antibody, YBM/42. Journal of Cellular Physiology, 1983, 115, 37-45.	2.0	17
376	Advantages of rat monoclonal antibodies. Trends in Immunology, 1983, 4, 100-101.	7.5	44
377	The characterisation of monoclonal antibodies against haemopoietic cells: Comparison of an immunoperoxidase method with fluorescence activated cell sorting. Journal of Immunological Methods, 1983, 61, 171-182.	0.6	15
378	A rapid solid-phase enzyme-linked binding assay for screening monoclonal antibodies to cell surface antigens. Journal of Immunological Methods, 1981, 44, 125-133.	0.6	86

#	Article	IF	CITATIONS
379	How many T cells help one B cell?. Seminars in Immunopathology, 1980, 3, 129-44.	4.0	2
380	Monoclonal antibody H 9/25 reacts with functional subsets of T and B cells: killer, killer precursor and plaque-forming cells. European Journal of Immunology, 1980, 10, 503-509.	1.6	19
381	The influence of thymus on the development of MHC restrictions exhibited by T-helper cells. Nature, 1979, 277, 137-138.	13.7	37
382	The Monogamous T helper cell. , 1979, , 403-412.		2
383	Influence of the major histocompatibility complex on lymphocyte interactions in antibody formation. Nature, 1978, 274, 166-168.	13.7	50
384	The Influence of the Major Histocompatibility Complex on the Function of T-Helper Cells in Antibody Formation. Immunological Reviews, 1978, 42, 202-223.	2.8	54
385	THE MAJOR HISTOCOMPATIBILITY SYSTEM AND THE IMMUNE RESPONSE. British Medical Bulletin, 1978, 34, 253-258.	2.7	42
386	Monogamous T helper cell. Nature, 1977, 268, 641-642.	13.7	24
387	Conditions Determining the Generation and Expression of T Helper Cells. Immunological Reviews, 1977, 35, 121-145.	2.8	60
388	Evidence for the inactivation of precursor B cells in high dose unresponsiveness. Nature, 1976, 264, 780-782.	13.7	8
389	Cooperation across the histocompatibility barrier: H2d T cells primed to antigen in an H-2d environment can cooperate with H-2k B cells Journal of Experimental Medicine, 1976, 144, 1707-1711.	4.2	13
390	The failure to show a necessary role for C3 in thein vitro antibody response. European Journal of Immunology, 1975, 5, 185-193.	1.6	43
391	B Cell Activation. Immunological Reviews, 1975, 23, 213-222.	2.8	5
392	Cooperation across the histocompatibility barrier. Nature, 1975, 258, 728-730.	13.7	47
393	Low dose unresponsiveness with a thymus independent antigen. Nature, 1975, 258, 730-731.	13.7	14
394	T cell dependence of B cell unresponsivenessin vitro. European Journal of Immunology, 1974, 4, 410-416.	1.6	20
395	Properties of educated T cells. The ability of educated T cells to facilitate the immune response to non-cross-reacting antigensin vitro. European Journal of Immunology, 1973, 3, 167-172.	1.6	22
396	T Cell-dependent Mediator in the Immune Response. Nature, 1973, 243, 356-357.	13.7	64

#	Article	IF	CITATIONS
397	Immune Privilege and Tolerance $\hat{a} \in \hat{~}$ Therapeutic Antibody Approaches. , 0, , 350-370.		Ο
398	Pharmacologically Modified Dendritic Cells: A Route to Tolerance-associated Genes. , 0, , 619-647.		1
399	Ectopic Transplantation of Tissues Under the Kidney Capsule. , 0, , 347-354.		1
400	Induction of Immunological Tolerance as a Therapeutic Procedure. , 0, , 771-785.		0
401	SAGE Analysis of Cell Types Involved in Tolerance Induction. , 0, , 225-252.		Ο
402	Genetic Modification of Dendritic Cells Through the Directed Differentiation of Embryonic Stem Cells. , 0, , 59-72.		0