Neville R Kallenbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12062838/publications.pdf

Version: 2024-02-01

99 papers 8,474 citations

47006 47 h-index 91 g-index

101 all docs

101 docs citations

101 times ranked

6399 citing authors

#	Article	IF	CITATIONS
1	Dystrophin's Tandem Calponin-Homology Domains: Is the Case Closed?. Biophysical Journal, 2012, 103, 1818-1819.	0.5	4
2	OH radical production stimulated by (RW)4D, a synthetic antimicrobial agent and indolicidin. MedChemComm, 2012, 3, 1548.	3.4	3
3	End Effects Influence Short Model Peptide Conformation. Journal of the American Chemical Society, 2012, 134, 1571-1576.	13.7	33
4	Control of Bacterial Persister Cells by Trp/Arg-Containing Antimicrobial Peptides. Applied and Environmental Microbiology, 2011, 77, 4878-4885.	3.1	82
5	Structure and antimicrobial properties of multivalent short peptides. MedChemComm, 2011, 2, 308.	3.4	34
6	Ramachandran redux. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3-4.	7.1	26
7	Conformational Heterogeneity in PNA:PNA Duplexes. Macromolecules, 2010, 43, 2692-2703.	4.8	28
8	Effects of Trp- and Arg-Containing Antimicrobial-Peptide Structure on Inhibition of <i>Escherichia coli</i> Planktonic Growth and Biofilm Formation. Applied and Environmental Microbiology, 2010, 76, 1967-1974.	3.1	41
9	Synthesis and biological evaluation of novel 1,3,5-triazine derivatives as antimicrobial agents. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1308-1311.	2.2	96
10	Interactions of recombinant HMGB proteins with branched RNA substrates. Biochemical and Biophysical Research Communications, 2008, 377, 262-267.	2.1	15
11	Length Effects in Antimicrobial Peptides of the (RW)n Series. Antimicrobial Agents and Chemotherapy, 2007, 51, 597-603.	3.2	167
12	Conformational Specificity of the <i>Lac</i> Repressor Coiled-Coil Tetramerization Domain [,] . Biochemistry, 2007, 46, 14951-14959.	2.5	21
13	Tuning the Membrane Selectivity of Antimicrobial Peptides by Using Multivalent Design. ChemBioChem, 2007, 8, 2063-2065.	2.6	55
14	Spin Relaxation Enhancement Confirms Dominance of Extended Conformations in Short Alanine Peptides. Angewandte Chemie - International Edition, 2007, 46, 9036-9039.	13.8	29
15	Conformation of the Backbone in Unfolded Proteins. Chemical Reviews, 2006, 106, 1877-1897.	47.7	249
16	Multivalent Antimicrobial Peptides from a Reactive Polymer Scaffold. Journal of Medicinal Chemistry, 2006, 49, 3436-3439.	6.4	42
17	A Parallel Coiled-Coil Tetramer with Offset Helicesâ€,‡. Biochemistry, 2006, 45, 15224-15231.	2.5	37
18	Self-assembly of coiled-coil tetramers in the 1.40 A structure of a leucine-zipper mutant. Protein Science, 2006, 16, 323-328.	7.6	16

#	Article	IF	CITATIONS
19	Antiparallel Four-Stranded Coiled Coil Specified by a 3-3-1 Hydrophobic Heptad Repeat. Structure, 2006, 14, 247-255.	3.3	62
20	A seven-helix coiled coil. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15457-15462.	7.1	211
21	PII structure in the model peptides for unfolded proteins: Studies on ubiquitin fragments and several alanine-rich peptides containing QQQ, SSS, FFF, and VVV. Proteins: Structure, Function and Bioinformatics, 2005, 63, 312-321.	2.6	21
22	Polyproline II propensities from GGXGG peptides reveal an anticorrelation with Â-sheet scales. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17964-17968.	7.1	148
23	Neighbor Effect on PPII Conformation in Alanine Peptides. Journal of the American Chemical Society, 2005, 127, 10146-10147.	13.7	49
24	Atomic structure of a tryptophan-zipper pentamer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16156-16161.	7.1	77
25	The polyproline II conformation in short alanine peptides is noncooperative. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15352-15357.	7.1	86
26	Solvent Dependence of PII Conformation in Model Alanine Peptides. Journal of the American Chemical Society, 2004, 126, 15141-15150.	13.7	75
27	Vibrational Raman Optical Activity Characterization of Poly(l-proline) II Helix in Alanine Oligopeptides. Journal of the American Chemical Society, 2004, 126, 5076-5077.	13.7	139
28	Helix formation and the unfolded state of a 52-residue helical protein. Protein Science, 2004, 13, 177-189.	7.6	19
29	The Pentapeptide GGAGG Has PII Conformation. Journal of the American Chemical Society, 2003, 125, 8092-8093.	13.7	67
30	Polyproline II structure in a sequence of seven alanine residues. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9190-9195.	7.1	478
31	Cationâ^Ï€ Interaction in Model α-Helical Peptides. Journal of the American Chemical Society, 2002, 124, 3284-3291.	13.7	145
32	D/H Amide Isotope Effect in Model α-Helical Peptides. Journal of the American Chemical Society, 2002, 124, 13994-13995.	13.7	8
33	Is polyproline II a major backbone conformation in unfolded proteins?. Advances in Protein Chemistry, 2002, 62, 163-240.	4.4	282
34	Non-classical helix-stabilizing interactions: Cî—,Hâ <o 101-102,="" 2002,="" 267-279.<="" and="" between="" biophysical="" chains="" chemistry,="" glu="" h-bonding="" in="" peptides.="" phe="" side="" td="" α-helical=""><td>2.8</td><td>30</td></o>	2.8	30
35	Polar Interactions with Aromatic Side Chains in α-Helical Peptides: Ch···O H-Bonding and Cationâ~Ï€ Interactions. Journal of the American Chemical Society, 2001, 123, 6451-6452.	13.7	64
36	Cooperative helix stabilization by complex Arg-Glu salt bridges. Proteins: Structure, Function and Bioinformatics, 2001, 44, 123-132.	2.6	65

#	Article	IF	CITATIONS
37	Stabilization of α-helix structure by polar side-chain interactions: Complex salt bridges, cation–π interactions, and C–H … O H-bonds. Biopolymers, 2001, 60, 366.	2.4	66
38	Interactions between HMG boxes. Protein Engineering, Design and Selection, 2001, 14, 1015-1023.	2.1	6
39	Alanine mutagenesis of high-mobility-group-protein-1 box B (HMG1-B). Biochemical Journal, 2000, 347, 807.	3.7	4
40	Alanine mutagenesis of high-mobility-group-protein-1 box B (HMG1-B). Biochemical Journal, 2000, 347, 807-814.	3.7	12
41	DNA binding by single HMG box model proteins. Nucleic Acids Research, 2000, 28, 4044-4050.	14.5	21
42	Alanine Is an Intrinsic α-Helix Stabilizing Amino Acid. Journal of the American Chemical Society, 1999, 121, 5571-5572.	13.7	103
43	Proteolysis as a probe of thermal unfolding of cytochrome C. , 1998, 30, 435-441.		23
44	Surface salt bridges stabilize the GCN4 leucine zipper. Protein Science, 1998, 7, 2431-2437.	7.6	94
45	$\hat{l}\pm$ -Helix Nucleation Constant in Copolypeptides of Alanine and Ornithine or Lysine. Journal of the American Chemical Society, 1998, 120, 10646-10652.	13.7	53
46	Stabilizing Effect of a Multiple Salt Bridge in a Prenucleated Peptide. Journal of the American Chemical Society, 1998, 120, 10643-10645.	13.7	41
47	Effect of Nuclear Protein HMG1 onin VitroSlippage Synthesis of the Tandem Repeat dTG·dCAâ€. Biochemistry, 1997, 36, 5418-5424.	2.5	10
48	The Role of Alanine Sequences in Forming \hat{l}^2 -Sheets of Spider Dragline Silk. Journal of the American Chemical Society, 1997, 119, 5053-5054.	13.7	9
49	The role of context on αâ€helix stabilization: Hostâ€guest analysis in a mixed background peptide model. Protein Science, 1997, 6, 1264-1272.	7.6	50
50	Stabilization of Helical Peptides by Mixed Spaced Salt Bridges. Journal of Biomolecular Structure and Dynamics, 1996, 14, 285-291.	3.5	4
51	HMG Box Proteins Interact With Multiple Tandemly Repeated (GCC)n•(GGC)mDNA Sequences. Journal of Biomolecular Structure and Dynamics, 1996, 14, 235-238.	3.5	5
52	CD Spectroscopy and the Helix-Coil Transition in Peptides and Polypeptides., 1996,, 201-259.		46
53	Structural analysis of the N―and Câ€ŧermini in a peptide with consensus sequence. Protein Science, 1995, 4, 1446-1456.	7.6	40
54	Breathing life into the folding pathway of cytochrome c. Nature Structural Biology, 1995, 2, 813-816.	9.7	3

#	Article	IF	CITATIONS
55	Mapping tRNA and 5S RNA Tertiary Structures by Charge Dependent Fe(II)-Catalyzed Cleavage. Journal of Biomolecular Structure and Dynamics, 1994, 11, 901-911.	3.5	7
56	Stabilization of myoglobin by multiple alanine substitutions in helical positions. Protein Science, 1994, 3, 1430-1435.	7.6	19
57	Alpha helix capping in synthetic model peptides by reciprocal side chain-main chain interactions: Evidence for an N terminal "capping box†Proteins: Structure, Function and Bioinformatics, 1994, 18, 1-7.	2.6	91
58	Molten globular characteristics of the native state of apomyoglobin. Nature Structural and Molecular Biology, 1994, 1, 447-452.	8.2	67
59	DNA cruciforms. Current Opinion in Structural Biology, 1994, 4, 365-371.	5.7	5
60	Effects of Unpaired Bases on the Conformation and Stability of Three-Arm DNA Junctions. Biochemistry, 1994, 33, 3660-3667.	2.5	36
61	Effects of alanine substitutions in <i>î±</i> â€helices of sperm whale myoglobin on protein stability. Protein Science, 1993, 2, 1099-1105.	7.6	51
62	Effect of T-T base mismatches on three-arm DNA junctions. Biochemistry, 1993, 32, 6898-6907.	2.5	21
63	Interaction of Drugs with Branched DNA Structures. Critical Reviews in Biochemistry and Molecular Biology, 1992, 27, 157-190.	5.2	23
64	Conformational properties of B-Z junctions in DNA. Biochemistry, 1992, 31, 4712-4719.	2.5	22
65	Energetic contribution of solvent-exposed ion pairs to alpha-helix structure. Journal of Molecular Biology, 1992, 223, 343-350.	4.2	133
66	Thermodynamics of DNA branching. Journal of Molecular Biology, 1992, 223, 781-789.	4.2	61
67	Effect of sequence on the structure of three-arm DNA junctions. Biochemistry, 1991, 30, 5815-5820.	2.5	43
68	Parallel and antiparallel holliday junctions differ in structure and stability. Journal of Molecular Biology, 1991, 221, 1419-1432.	4.2	29
69	The helix-coil transition in heterogeneous peptides with specific side-chain interactions: Theory and comparison with CD spectral data. Biopolymers, 1991, 31, 1605-1614.	2.4	213
70	Site-specific Interaction of the Antitumor Antibiotic Dynemicin with Branched DNA Molecules. Journal of Biomolecular Structure and Dynamics, 1991, 9, 271-283.	3.5	12
71	Determination of DNA Cleavage Specificity by Esperamicins. Journal of Biomolecular Structure and Dynamics, 1991, 9, 285-298.	3.5	7
72	Drug binding by branched DNA molecules: analysis by chemical footprinting of intercalation into an immobile junction. Biochemistry, 1990, 29, 570-578.	2.5	50

#	Article	IF	Citations
73	Drug binding by branched DNA: selective interaction of tetrapyridyl porphyrins with an immobile junction. Biochemistry, 1990, 29, 1614-1624.	2.5	44
74	Drug binding by branched DNA: selective interaction of the dye Stains-All with an immobile junction. Biochemistry, 1990, 29, 3407-3412.	2.5	33
75	Asymmetric structure of a three-arm DNA junction. Biochemistry, 1990, 29, 10927-10934.	2.5	59
76	Gel electrophoretic analysis of DNA branched junctions. Electrophoresis, 1989, 10, 345-354.	2.4	48
77	Site-specific interaction of intercalating drugs with a branched DNA molecule. Biochemistry, 1989, 28, 2355-2359.	2.5	58
78	The ligation and flexibility of four-arm DNA junctions. Biopolymers, 1988, 27, 1337-1352.	2.4	118
79	Construction and analysis of monomobile DNA junctions. Biochemistry, 1988, 27, 6032-6038.	2.5	104
80	The melting behavior of a DNA junction structure: A calorimetric and spectroscopic study. Biopolymers, 1987, 26, 1621-1634.	2.4	102
81	Three-arm nucleic acid junctions are flexible. Nucleic Acids Research, 1986, 14, 9745-9753.	14.5	212
82	Stabilization of the ribonuclease S-peptide \hat{l}_{\pm} -helix by trifluoroethanol. Proteins: Structure, Function and Bioinformatics, 1986, 1, 211-217.	2.6	382
83	NMR analysis of DNA junctions: imino proton NMR studies of individual arms and intact junction. Biochemistry, 1985, 24, 5745-5749.	2.5	82
84	An immobile nucleic acid junction constructed from oligonucleotides. Nature, 1983, 305, 829-831.	27.8	574
85	Structure of apamin in solution: a two-dimensional nuclear magnetic resonance study. Biochemistry, 1983, 22, 1901-1906.	2.5	104
86	Hydrogen exchange and structural dynamics of proteins and nucleic acids. Quarterly Reviews of Biophysics, 1983, 16, 521-655.	5.7	1,239
87	Fourth Rank Immobile Nucleic Acid Junctions. Journal of Biomolecular Structure and Dynamics, 1983, 1, 159-168.	3.5	24
88	Direct differential absorbance profiles of denaturing transitions in ribosomal and mRNA. Biopolymers, 1979, 18, 1515-1531.	2.4	4
89	Base-pair opening and closing reactions in the double helix. Journal of Molecular Biology, 1979, 135, 391-411.	4.2	158
90	Secondary structure in polyuridylic acid. Journal of Molecular Biology, 1978, 126, 467-479.	4.2	38

#	Article	IF	CITATION
91	RNA structure. Quarterly Reviews of Biophysics, 1977, 10, 138-236.	5.7	47
92	On the secondary structure in mRNA. BioSystems, 1977, 9, 201-210.	2.0	1
93	Determination of recognition sites of T4 RNA ligase on the 3′-OH and 5′-P termini of polyribonucleotide chains. Nature, 1975, 254, 452-454.	27.8	55
94	Purification and subunit structure of tryptophanyl tRNA synthetase (TRS) from baker's yeast. FEBS Letters, 1974, 45, 202-205.	2.8	12
95	Theory of oligonucleotide stabilization. I. The effect of single-strand stacking. Biopolymers, 1973, 12, 2093-2120.	2.4	37
96	Effect of non-complementary nucleotides on the rate of helix formation: Kinetics of formation of poly (I)Â-poly (C,I) and poly (I)Â-poly (C,U) complexes. Biopolymers, 1972, 11, 1613-1620.	2.4	7
97	Helical complexes of polyriboinosinic acid with copolymers of polyribocytidylic acid containing inosine, adenosine and uridine residues. Journal of Molecular Biology, 1971, 62, 591-607.	4.2	38
98	Theory of thermal transitions in low molecular weight RNA chains. Journal of Molecular Biology, 1968, 37, 445-466.	4.2	79
99	The melting transition of low-molecular-weight DNA: Theory and experiment. Journal of Molecular Biology, 1965, 11, 802-820.	4.2	176