
Nicholas B Turk-Browne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1206176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial gist extraction during human memory consolidation Journal of Experimental Psychology: Learning Memory and Cognition, 2022, 48, 929-941.	0.7	8
2	BrainIAK: The Brain Imaging Analysis Kit. , 2022, 2021, .		18
3	Increasing stimulus similarity drives nonmonotonic representational change in hippocampus. ELife, 2022, 11, .	2.8	22
4	Brain charts for the human lifespan. Nature, 2022, 604, 525-533.	13.7	518
5	RT-Cloud: A cloud-based software framework to simplify and standardize real-time fMRI. NeuroImage, 2022, 257, 119295.	2.1	2
6	Emergence and organization of adult brain function throughout child development. NeuroImage, 2021, 226, 117606.	2.1	15
7	Cloud-Based Functional Magnetic Resonance Imaging Neurofeedback to Reduce the Negative Attentional Bias in Depression: A Proof-of-Concept Study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 490-497.	1.1	9
8	Learning hierarchical sequence representations across human cortex and hippocampus. Science Advances, 2021, 7, .	4.7	93
9	Attention recruits frontal cortex in human infants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
10	Evidence of hippocampal learning in human infants. Current Biology, 2021, 31, 3358-3364.e4.	1.8	45
11	Retinotopic organization of visual cortex in human infants. Neuron, 2021, 109, 2616-2626.e6.	3.8	21
12	The promise of awake behaving infant fMRI as a deep measure of cognition. Current Opinion in Behavioral Sciences, 2021, 40, 5-11.	2.0	17
13	Brain kernel: A new spatial covariance function for fMRI data. NeuroImage, 2021, 245, 118580.	2.1	1
14	Content-based Dissociation of Hippocampal Involvement in Prediction. Journal of Cognitive Neuroscience, 2020, 32, 527-545.	1.1	24
15	Relating Visual Production and Recognition of Objects in Human Visual Cortex. Journal of Neuroscience, 2020, 40, 1710-1721.	1.7	18
16	Finding the Pattern: On-Line Extraction of Spatial Structure During Virtual Navigation. Psychological Science, 2020, 31, 1183-1190.	1.8	10
17	Re-imagining fMRI for awake behaving infants. Nature Communications, 2020, 11, 4523.	5.8	44
18	Statistical prediction of the future impairs episodic encoding of the present. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22760-22770.	3.3	47

#	Article	IF	CITATIONS
19	Functions of ventral visual cortex after bilateral medial temporal lobe damage. Progress in Neurobiology, 2020, 191, 101819.	2.8	5
20	The prevalence and importance of statistical learning in human cognition and behavior. Current Opinion in Behavioral Sciences, 2020, 32, 15-20.	2.0	60
21	BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis. PLoS Computational Biology, 2020, 16, e1007549.	1.5	44
22	Searching through functional space reveals distributed visual, auditory, and semantic coding in the human brain. PLoS Computational Biology, 2020, 16, e1008457.	1.5	4
23	Title is missing!. , 2020, 16, e1008457.		0
24	Title is missing!. , 2020, 16, e1008457.		0
25	Title is missing!. , 2020, 16, e1008457.		0
26	Title is missing!. , 2020, 16, e1008457.		0
27	Title is missing!. , 2020, 16, e1008457.		0
28	Title is missing!. , 2020, 16, e1008457.		0
29	BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis. , 2020, 16, e1007549.		0
30	BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis. , 2020, 16, e1007549.		0
31	BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis. , 2020, 16, e1007549.		0
32	BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis. , 2020, 16, e1007549.		0
33	Neural Overlap in Item Representations Across Episodes Impairs Context Memory. Cerebral Cortex, 2019, 29, 2682-2693.	1.6	11
34	Attentional bias in depression: understanding mechanisms to improve training and treatment. Current Opinion in Psychology, 2019, 29, 266-273.	2.5	62
35	Nonmonotonic Plasticity: How Memory Retrieval Drives Learning. Trends in Cognitive Sciences, 2019, 23, 726-742.	4.0	97
36	The hippocampus as a visual area organized by space and time: A spatiotemporal similarity hypothesis. Vision Research, 2019, 165, 123-130.	0.7	51

3

#	Article	IF	CITATIONS
37	Neurofeedback helps to reveal a relationship between context reinstatement and memory retrieval. NeuroImage, 2019, 200, 292-301.	2.1	21
38	Focusing on what matters: Modulation of the human hippocampus by relational attention. Hippocampus, 2019, 29, 1025-1037.	0.9	21
39	Synthesizing images with deep neural networks to manipulate representational similarity and induce representational change. Journal of Vision, 2019, 19, 202d.	0.1	0
40	Decoding the contents of the developing visual system with fMRI in awake infants. Journal of Vision, 2019, 19, 56a.	0.1	0
41	Regularity-induced attentional biases and their mnemonic consequences. Journal of Vision, 2019, 19, 231c.	0.1	0
42	Using Closed-Loop Real-Time fMRI Neurofeedback to Induce Neural Plasticity and Influence Perceptual Similarity. Journal of Vision, 2019, 19, 186c.	0.1	0
43	Infant fMRI: A Model System for Cognitive Neuroscience. Trends in Cognitive Sciences, 2018, 22, 375-387.	4.0	40
44	Flexible weighting of diverse inputs makes hippocampal function malleable. Neuroscience Letters, 2018, 680, 13-22.	1.0	29
45	Capturing Shared and Individual Information in fMRI Data. , 2018, , .		9
46	Associative Prediction of Visual Shape in the Hippocampus. Journal of Neuroscience, 2018, 38, 6888-6899.	1.7	90
47	Learning Naturalistic Temporal Structure in the Posterior Medial Network. Journal of Cognitive Neuroscience, 2018, 30, 1345-1365.	1.1	51
48	Forgetting from lapses of sustained attention. Psychonomic Bulletin and Review, 2018, 25, 605-611.	1.4	67
49	Common Object Representations for Visual Production and Recognition. Cognitive Science, 2018, 42, 2670-2698.	0.8	25
50	Neural Differentiation of Incorrectly Predicted Memories. Journal of Neuroscience, 2017, 37, 2022-2031.	1.7	64
51	Computational approaches to fMRI analysis. Nature Neuroscience, 2017, 20, 304-313.	7.1	185
52	How Hippocampal Memory Shapes, and Is Shaped by, Attention. , 2017, , 369-403.		47
53	Hippocampal Structure Predicts Statistical Learning and Associative Inference Abilities during Development. Journal of Cognitive Neuroscience, 2017, 29, 37-51.	1.1	113
54	Complementary learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160049.	1.8	305

#	Article	IF	CITATIONS
55	Noise correlations in the human brain and their impact on pattern classification. PLoS Computational Biology, 2017, 13, e1005674.	1.5	21
56	Attention Stabilizes Representations in the Human Hippocampus. Cerebral Cortex, 2016, 26, bhv041.	1.6	102
57	Real-time full correlation matrix analysis of fMRI data. , 2016, , .		6
58	Linking pattern completion in the hippocampus to predictive coding in visual cortex. Nature Neuroscience, 2016, 19, 665-667.	7.1	196
59	Attentional modulation of background connectivity between ventral visual cortex and the medial temporal lobe. Neurobiology of Learning and Memory, 2016, 134, 115-122.	1.0	32
60	Action-Based Learning of Multistate Objects in the Medial Temporal Lobe. Cerebral Cortex, 2016, 26, 1853-1865.	1.6	20
61	Statistical learning of temporal community structure in the hippocampus. Hippocampus, 2016, 26, 3-8.	0.9	220
62	Attention promotes episodic encoding by stabilizing hippocampal representations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E420-9.	3.3	145
63	Biased Competition during Long-term Memory Formation. Journal of Cognitive Neuroscience, 2016, 28, 187-197.	1.1	10
64	Neural systems involved in processing novel linguistic constructions and their visual referents. Language, Cognition and Neuroscience, 2016, 31, 129-144.	0.7	2
65	Error-driven learning in statistical summary perception Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 266-280.	0.7	8
66	Incidental biasing of attention from visual long-term memory Journal of Experimental Psychology: Learning Memory and Cognition, 2016, 42, 970-977.	0.7	27
67	Information theoretic complexity affects multisensory perception. Visual Cognition, 2015, 23, 825-829.	0.9	1
68	Dissociable behavioural outcomes of visual statistical learning. Visual Cognition, 2015, 23, 1072-1097.	0.9	15
69	Neurocognitive therapeutics: from concept to application in the treatment of negative attention bias. Biology of Mood & Anxiety Disorders, 2015, 5, 1.	4.7	47
70	Full correlation matrix analysis (FCMA): An unbiased method for task-related functional connectivity. Journal of Neuroscience Methods, 2015, 251, 108-119.	1.3	26
71	Closed-loop training of attention with real-time brain imaging. Nature Neuroscience, 2015, 18, 470-475.	7.1	254
72	The Necessity of the Medial Temporal Lobe for Statistical Learning. Journal of Cognitive Neuroscience, 2014, 26, 1736-1747.	1.1	264

#	Article	IF	CITATIONS
73	Pruning of memories by context-based prediction error. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8997-9002.	3.3	108
74	Optimizing real time fMRI neurofeedback for therapeutic discovery and development. NeuroImage: Clinical, 2014, 5, 245-255.	1.4	179
75	Functional Interactions as Big Data in the Human Brain. Science, 2013, 342, 580-584.	6.0	207
76	Representations of individuals in ventral temporal cortex defined by faces and biographies. Neuropsychologia, 2013, 51, 2100-2108.	0.7	41
77	Neural representations of events arise from temporal community structure. Nature Neuroscience, 2013, 16, 486-492.	7.1	398
78	Complementary attentional components of successful memory encoding. NeuroImage, 2013, 66, 553-562.	2.1	43
79	Mechanisms for widespread hippocampal involvement in cognition Journal of Experimental Psychology: General, 2013, 142, 1159-1170.	1.5	160
80	Attention Is Spontaneously Biased Toward Regularities. Psychological Science, 2013, 24, 667-677.	1.8	238
81	Feedback-driven tuning of statistical summary representations. Visual Cognition, 2013, 21, 685-689.	0.9	1
82	Representations of Facial Identity in the Left Hemisphere Require Right Hemisphere Processing. Journal of Cognitive Neuroscience, 2012, 24, 1006-1017.	1.1	31
83	Scene Representations in Parahippocampal Cortex Depend on Temporal Context. Journal of Neuroscience, 2012, 32, 7202-7207.	1.7	72
84	Shaping of Object Representations in the Human Medial Temporal Lobe Based on Temporal Regularities. Current Biology, 2012, 22, 1622-1627.	1.8	381
85	Memory-guided attention: control from multiple memory systems. Trends in Cognitive Sciences, 2012, 16, 576-579.	4.0	156
86	Statistical Learning and Its Consequences. Nebraska Symposium on Motivation, 2012, 59, 117-146.	0.9	42
87	Statistical Learning in Perception. , 2012, , 3182-3185.		0
88	Incidental encoding of numerosity in visual long-term memory. Visual Cognition, 2011, 19, 928-955.	0.9	2
89	A Taxonomy of External and Internal Attention. Annual Review of Psychology, 2011, 62, 73-101.	9.9	1,027
90	Mutual Interference Between Statistical Summary Perception and Statistical Learning. Psychological Science, 2011, 22, 1212-1219.	1.8	69

#	Article	IF	CITATIONS
91	Face-Specific Resting Functional Connectivity between the Fusiform Gyrus and Posterior Superior Temporal Sulcus. Frontiers in Human Neuroscience, 2010, 4, 176.	1.0	66
92	Implicit Perceptual Anticipation Triggered by Statistical Learning. Journal of Neuroscience, 2010, 30, 11177-11187.	1.7	322
93	Neural Evidence of Statistical Learning: Efficient Detection of Visual Regularities Without Awareness. Journal of Cognitive Neuroscience, 2009, 21, 1934-1945.	1.1	399
94	Flexible visual statistical learning: Transfer across space and time Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 195-202.	0.7	81
95	Spatiotemporal object continuity in human ventral visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8840-8845.	3.3	35
96	Neural predictors of moment-to-moment fluctuations in cognitive flexibility. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13592-13597.	3.3	141
97	When a Thought Equals a Look: Refreshing Enhances Perceptual Memory. Journal of Cognitive Neuroscience, 2008, 20, 1371-1380.	1.1	38
98	Multidimensional visual statistical learning Journal of Experimental Psychology: Learning Memory and Cognition, 2008, 34, 399-407.	0.7	113
99	Babies and Brains: Habituation in Infant Cognition and Functional Neuroimaging. Frontiers in Human Neuroscience, 2008, 2, 16.	1.0	72
100	Visual Quality Determines the Direction of Neural Repetition Effects. Cerebral Cortex, 2007, 17, 425-433.	1.6	83
101	Dissociating Task Performance from fMRI Repetition Attenuation in Ventral Visual Cortex. Journal of Neuroscience, 2007, 27, 5981-5985.	1.7	72
102	Assessment of age-related changes in inhibition and binding using eye movement monitoring Psychology and Aging, 2007, 22, 239-250.	1.4	66
103	Interactions between attention and memory. Current Opinion in Neurobiology, 2007, 17, 177-184.	2.0	459
104	Linking Implicit and Explicit Memory: Common Encoding Factors and Shared Representations. Neuron, 2006, 49, 917-927.	3.8	208
105	The Automaticity of Visual Statistical Learning Journal of Experimental Psychology: General, 2005, 134, 552-564.	1.5	618