
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1206172/publications.pdf Version: 2024-02-01

Δτομομί Τλγέρλ

#	Article	IF	CITATIONS
1	Manganese action in brain function. Brain Research Reviews, 2003, 41, 79-87.	9.1	481
2	Zinc homeostasis and functions of zinc in the brain. BioMetals, 2001, 14, 343-351.	1.8	302
3	Insight into zinc signaling from dietary zinc deficiency. Brain Research Reviews, 2009, 62, 33-44.	9.1	174
4	Biological half-lives of zinc and manganese in rat brain. Brain Research, 1995, 695, 53-58.	1.1	151
5	Decreased Brain Zinc Availability Reduces Hippocampal Neurogenesis in Mice and Rats. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1579-1588.	2.4	127
6	Susceptibility to kainate-induced seizures under dietary zinc deficiency. Journal of Neurochemistry, 2003, 85, 1575-1580.	2.1	105
7	Cadmium toxicity in synaptic neurotransmission in the brain. Brain Research, 2001, 894, 336-339.	1.1	99
8	Differential effects of zinc on glutamatergic and GABAergic neurotransmitter systems in the hippocampus. Journal of Neuroscience Research, 2004, 75, 225-229.	1.3	99
9	Release of glutamate and GABA in the hippocampus under zinc deficiency. Journal of Neuroscience Research, 2003, 72, 537-542.	1.3	94
10	Anxiety-like behavior of young rats after 2-week zinc deprivation. Behavioural Brain Research, 2007, 177, 1-6.	1.2	89
11	Zinc homeostasis in the brain of adult rats fed zinc-deficient diet. Journal of Neuroscience Research, 2001, 63, 447-452.	1.3	80
12	Suppressive effect of Yokukansan on excessive release of glutamate and aspartate in the hippocampus of zinc-deficient rats. Nutritional Neuroscience, 2008, 11, 41-46.	1.5	79
13	Inhibition of presynaptic activity by zinc released from mossy fiber terminals during tetanic stimulation. Journal of Neuroscience Research, 2006, 83, 167-176.	1.3	72
14	Synaptic Zn2+ homeostasis and its significance. Metallomics, 2013, 5, 417.	1.0	72
15	Relationship between brain zinc and transient learning impairment of adult rats fed zinc-deficient diet. Brain Research, 2000, 859, 352-357.	1.1	70
16	Attenuation of abnormal glutamate release in zinc deficiency by zinc and Yokukansan. Neurochemistry International, 2008, 53, 230-235.	1.9	66
17	Manganese uptake into rat brain during development and aging. Journal of Neuroscience Research, 1999, 56, 93-98.	1.3	63
18	Behavior in the forced swim test and neurochemical changes in the hippocampus in young rats after 2-week zinc deprivation. Neurochemistry International, 2009, 55, 536-541.	1.9	62

#	Article	IF	CITATIONS
19	Zinc Signaling in the Hippocampus and Its Relation to Pathogenesis of Depression. Molecular Neurobiology, 2011, 44, 166-174.	1.9	62
20	Zinc homeostasis in the hippocampus of zinc-deficient young adult rats. Neurochemistry International, 2005, 46, 221-225.	1.9	60
21	Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behavioural Brain Research, 2012, 226, 259-264.	1.2	54
22	Susceptibility to stress in young rats after 2-week zinc deprivation. Neurochemistry International, 2010, 56, 410-416.	1.9	53
23	Extracellular Zn ²⁺ Is Essential for Amyloid β _{1–42} -Induced Cognitive Decline in the Normal Brain and Its Rescue. Journal of Neuroscience, 2017, 37, 7253-7262.	1.7	47
24	In vivo stimulation-induced release of manganese in rat amygdala. Brain Research, 1998, 811, 147-151.	1.1	45
25	Inhibitory function of zinc against excitation of hippocampal glutamatergic neurons. Epilepsy Research, 2003, 57, 169-174.	0.8	43
26	Role of zinc influx via AMPA/kainate receptor activation in metabotropic glutamate receptor-mediated calcium release. Journal of Neuroscience Research, 2007, 85, 1310-1317.	1.3	43
27	Transient Increase in Zn2+ in Hippocampal CA1 Pyramidal Neurons Causes Reversible Memory Deficit. PLoS ONE, 2011, 6, e28615.	1.1	43
28	Zinc movement in the brain under kainate-induced seizures. Epilepsy Research, 2003, 54, 123-129.	0.8	40
29	Cognitive decline due to excess synaptic Zn2+ signaling in the hippocampus. Frontiers in Aging Neuroscience, 2014, 6, 26.	1.7	38
30	Negative modulation of presynaptic activity by zinc released from schaffer collaterals. Journal of Neuroscience Research, 2007, 85, 3666-3672.	1.3	37
31	Enhancement of social isolation-induced aggressive behavior of young mice by zinc deficiency. Life Sciences, 2008, 82, 909-914.	2.0	37
32	Facilitated Neurogenesis in the Developing Hippocampus After Intake of Theanine, an Amino Acid in Tea Leaves, and Object Recognition Memory. Cellular and Molecular Neurobiology, 2011, 31, 1079-1088.	1.7	37
33	Influence of transferrin on manganese uptake in rat brain. , 2000, 59, 542-552.		35
34	Intracellular Zn ²⁺ signaling in the dentate gyrus is required for object recognition memory. Hippocampus, 2014, 24, 1404-1412.	0.9	35
35	Release of zinc from the brain of El (epilepsy) mice during seizure induction. Brain Research, 1999, 828, 174-178.	1.1	33
36	Intracellular Zn ²⁺ signaling in cognition. Journal of Neuroscience Research, 2014, 92, 819-824.	1.3	33

#	Article	IF	CITATIONS
37	Amyloid β-Mediated Zn2+ Influx into Dentate Granule Cells Transiently Induces a Short-Term Cognitive Deficit. PLoS ONE, 2014, 9, e115923.	1.1	33
38	Region-specific loss of zinc in the brain in pentylentetrazole-induced seizures and seizure susceptibility in zinc deficiency. Epilepsy Research, 2006, 70, 41-48.	0.8	32
39	Proposed glucocorticoid-mediated zinc signaling in the hippocampus. Metallomics, 2012, 4, 614.	1.0	32
40	Excess influx of Zn 2+ into dentate granule cells affects object recognition memory via attenuated LTP. Neurochemistry International, 2015, 87, 60-65.	1.9	32
41	Increase in hippocampal cell death after treatment with kainate in zinc deficiency. Neurochemistry International, 2005, 47, 539-544.	1.9	31
42	Attenuation of hippocampal mossy fiber longâ€ŧerm potentiation by low micromolar concentrations of zinc. Journal of Neuroscience Research, 2008, 86, 2906-2911.	1.3	30
43	Hippocampal calcium dyshomeostasis and long-term potentiation in 2-week zinc deficiency. Neurochemistry International, 2008, 52, 241-246.	1.9	29
44	Zinc signaling through glucocorticoid and glutamate signaling in stressful circumstances. Journal of Neuroscience Research, 2010, 88, 3002-3010.	1.3	29
45	Significance of the degree of synaptic Zn2+ signaling in cognition. BioMetals, 2016, 29, 177-185.	1.8	29
46	The Impact of Synaptic Zn2+ Dynamics on Cognition and Its Decline. International Journal of Molecular Sciences, 2017, 18, 2411.	1.8	29
47	109Cd transport in rat brain. Brain Research Bulletin, 1999, 49, 453-457.	1.4	28
48	Impairment of GABAergic neurotransmitter system in the amygdala of young rats after 4-week zinc deprivation. Neurochemistry International, 2006, 49, 746-750.	1.9	28
49	Response of extracelluar zinc in the ventral hippocampus against novelty stress. Journal of Neurochemistry, 2006, 99, 670-676.	2.1	28
50	Manganese concentration in mouse brain after intravenous injection. Journal of Neuroscience Research, 2000, 61, 350-356.	1.3	27
51	Facilitation of zinc influx via AMPA/kainate receptor activation in the hippocampus. Neurochemistry International, 2009, 55, 376-382.	1.9	27
52	Preventive effect of theanine intake on stress-induced impairments of hippocamapal long-term potentiation and recognition memory. Brain Research Bulletin, 2013, 95, 1-6.	1.4	27
53	Significance of synaptic Zn 2+ signaling in zincergic and non-zincergic synapses in the hippocampus in cognition. Journal of Trace Elements in Medicine and Biology, 2016, 38, 93-98.	1.5	27
54	Enhanced excitability of hippocampal mossy fibers and CA3 neurons under dietary zinc deficiency. Epilepsy Research, 2005, 63, 77-84.	0.8	26

#	Article	IF	CITATIONS
55	Extracellular Zn2+ Influx into Nigral Dopaminergic Neurons Plays a Key Role for Pathogenesis of 6-Hydroxydopamine-Induced Parkinson's Disease in Rats. Molecular Neurobiology, 2019, 56, 435-443.	1.9	26
56	Response of hippocampal mossy fiber zinc to excessive glutamate release. Neurochemistry International, 2007, 50, 322-327.	1.9	25
57	Ameliorative effect of Yokukansan on social isolation-induced aggressive behavior of zinc-deficient young mice. Brain Research Bulletin, 2010, 83, 351-355.	1.4	25
58	Blockade of intracellular Zn2+signaling in the dentate gyrus erases recognition memory via impairment of maintained LTP. Hippocampus, 2015, 25, 952-962.	0.9	25
59	AMPA-induced extracellular Zn2+ influx into nigral dopaminergic neurons causes movement disorder in rats. NeuroToxicology, 2018, 69, 23-28.	1.4	25
60	Responsiveness to kainate in young rats after 2-week zinc deprivation. BioMetals, 2006, 19, 565-572.	1.8	24
61	Therapeutic effect of Yokukansan on social isolation-induced aggressive behavior of zinc-deficient and pair-fed mice. Brain Research Bulletin, 2012, 87, 551-555.	1.4	24
62	Characteristic of Extracellular Zn2+ Influx in the Middle-Aged Dentate Gyrus and Its Involvement in Attenuation of LTP. Molecular Neurobiology, 2018, 55, 2185-2195.	1.9	24
63	Involvement of unusual glutamate release in kainate-induced seizures in zinc-deficient adult rats. Epilepsy Research, 2005, 66, 137-143.	0.8	23
64	Insight into Glutamate Excitotoxicity from Synaptic Zinc Homeostasis. International Journal of Alzheimer's Disease, 2011, 2011, 1-8.	1.1	23
65	Zinc signaling in the hippocampus and its relation to pathogenesis of depression. Journal of Trace Elements in Medicine and Biology, 2012, 26, 80-84.	1.5	23
66	Unique Induction of CA1 LTP Components After Intake of Theanine, an Amino Acid in Tea Leaves and its Effect on Stress Response. Cellular and Molecular Neurobiology, 2012, 32, 41-48.	1.7	23
67	Novel Defense by Metallothionein Induction Against Cognitive Decline: From Amyloid β1–42-Induced Excess Zn2+ to Functional Zn2+ Deficiency. Molecular Neurobiology, 2018, 55, 7775-7788.	1.9	23
68	Unique response of zinc in the hippocampus to behavioral stress and attenuation of subsequent mossy fiber long-term potentiation. NeuroToxicology, 2009, 30, 712-717.	1.4	22
69	In vitro and in vivo physiology of low nanomolar concentrations of Zn2+ in artificial cerebrospinal fluid. Scientific Reports, 2017, 7, 42897.	1.6	22
70	Involvement of glucocorticoid-mediated Zn2+ signaling in attenuation of hippocampal CA1 LTP by acute stress. Neurochemistry International, 2012, 60, 394-399.	1.9	21
71	Insight into cognitive decline from Zn 2+ dynamics through extracellular signaling of glutamate and glucocorticoids. Archives of Biochemistry and Biophysics, 2016, 611, 93-99.	1.4	20
72	Blockade of Rapid Influx of Extracellular Zn2+ into Nigral Dopaminergic Neurons Overcomes Paraquat-Induced Parkinson's Disease in Rats. Molecular Neurobiology, 2019, 56, 4539-4548.	1.9	20

#	Article	IF	CITATIONS
73	Zinc differentially acts on components of long-term potentiation at hippocampal CA1 synapses. Brain Research, 2010, 1323, 59-64.	1.1	19
74	Influences of yokukansankachimpihange on aggressive behavior of zinc-deficient mice and actions of the ingredients on excessive neural exocytosis in the hippocampus of zinc-deficient rats. Experimental Animals, 2016, 65, 353-361.	0.7	19
75	ls interaction of amyloid β-peptides with metals involved in cognitive activity?. Metallomics, 2015, 7, 1205-1212.	1.0	18
76	Maintained LTP and Memory Are Lost by Zn2+ Influx into Dentate Granule Cells, but Not Ca2+ Influx. Molecular Neurobiology, 2018, 55, 1498-1508.	1.9	18
77	Paraquat as an Environmental Risk Factor in Parkinson's Disease Accelerates Age-Related Degeneration Via Rapid Influx of Extracellular Zn2+ into Nigral Dopaminergic Neurons. Molecular Neurobiology, 2019, 56, 7789-7799.	1.9	18
78	Suppressive effect of Saiko-ka-ryukotsu-borei-to, a herbal medicine, on excessive release of glutamate in the hippocampus. Brain Research Bulletin, 2004, 64, 273-277.	1.4	17
79	Abnormal iron accumulation in the brain of neonatal hypotransferrinemic mice. Brain Research, 2001, 912, 154-161.	1.1	16
80	Alteration of zinc concentrations in the brain implanted with C6 glioma. Brain Research, 2003, 965, 170-173.	1.1	16
81	Alzheimer risk factors age and female sex induce cortical Aβ aggregation by raising extracellular zinc. Molecular Psychiatry, 2020, 25, 2728-2741.	4.1	16
82	65Zn localization in rat brain after intracerebroventricular injection of 65Zn-histidine. Brain Research, 2000, 863, 241-244.	1.1	15
83	Influence of iron-saturation of plasma transferrin in iron distribution in the brain. Neurochemistry International, 2002, 41, 223-228.	1.9	15
84	Analysis of Brain Function and Prevention of Brain Diseases: the Action of Trace Metals. Journal of Health Science, 2004, 50, 429-442.	0.9	15
85	Significance of Transferrin in Iron Delivery to the Brain. Journal of Health Science, 2001, 47, 520-524.	0.9	14
86	Zinc-mediated attenuation of hippocampal mossy fiber long-term potentiation induced by forskolin. Neurochemistry International, 2010, 57, 608-614.	1.9	14
87	In vivo synaptic activity-independent co-uptakes of amyloid β1–42 and Zn2+ into dentate granule cells in the normal brain. Scientific Reports, 2019, 9, 6498.	1.6	14
88	Significance of Zn2+ signaling in cognition: Insight from synaptic Zn2+ dyshomeostasis. Journal of Trace Elements in Medicine and Biology, 2014, 28, 393-396.	1.5	13
89	Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model. International Journal of Molecular Sciences, 2016, 17, 1149.	1.8	13
90	Preferential Neurodegeneration in the Dentate Gyrus by Amyloid β1–42-Induced Intracellular Zn2+Dysregulation and Its Defense Strategy. Molecular Neurobiology, 2020, 57, 1875-1888.	1.9	13

#	Article	IF	CITATIONS
91	Possible involvement of plasma histidine in differential brain permeability to zinc and cadmium. BioMetals, 2002, 15, 371-375.	1.8	12
92	Zinc release from Schaffer collaterals and its significance. Brain Research Bulletin, 2006, 68, 442-447.	1.4	12
93	Abnormal Ca2+ mobilization in hippocampal slices of epileptic animals fed a zinc-deficient diet. Epilepsy Research, 2009, 83, 73-80.	0.8	12
94	Advantageous effect of theanine intake on cognition. Nutritional Neuroscience, 2014, 17, 279-283.	1.5	12
95	Involvement of Nâ€methylâ€Dâ€aspartate receptor subunits in zincâ€mediated modification of CA1 longâ€term potentiation in the developing hippocampus. Journal of Neuroscience Research, 2012, 90, 551-558.	1.3	11
96	Enhanced Susceptibility to Spontaneous Seizures of Noda Epileptic Rats by Loss of Synaptic Zn2+. PLoS ONE, 2013, 8, e71372.	1.1	11
97	Abnormal iron delivery to the bone marrow in neonatal hypotransferrinemic mice. BioMetals, 2002, 15, 33-36.	1.8	10
98	Differential effects of zinc influx via AMPA/kainate receptor activation on subsequent induction of hippocampal CA1 LTP components. Brain Research, 2010, 1354, 188-195.	1.1	10
99	Significance of Low Nanomolar Concentration of Zn2+ in Artificial Cerebrospinal Fluid. Molecular Neurobiology, 2017, 54, 2477-2482.	1.9	10
100	Extracellular Zn2+-Dependent Amyloid-β1–42 Neurotoxicity in Alzheimer's Disease Pathogenesis. Biological Trace Element Research, 2021, 199, 53-61.	1.9	10
101	Involvement of amygdalar extracellular zinc in rat behavior for passive avoidance. Neuroscience Letters, 2004, 358, 119-122.	1.0	9
102	Regulation of extracellular Zn ²⁺ homeostasis in the hippocampus as a therapeutic target for Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2015, 19, 1051-1058.	1.5	9
103	Blockade of intracellular Zn 2+ signaling in the basolateral amygdala affects object recognition memory via attenuation of dentate gyrus LTP. Neurochemistry International, 2017, 108, 1-6.	1.9	9
104	Weakened Intracellular Zn2+-Buffering in the Aged Dentate Gyrus and Its Involvement in Erasure of Maintained LTP. Molecular Neurobiology, 2018, 55, 3856-3865.	1.9	9
105	Age-Dependent Modification of Intracellular Zn ²⁺ Buffering in the Hippocampus and Its Impact. Biological and Pharmaceutical Bulletin, 2019, 42, 1070-1075.	0.6	9
106	Extracellular Zn2+-independently attenuated LTP by human amyloid β1-40 and rat amyloid β1-42. Biochemical and Biophysical Research Communications, 2019, 514, 888-892.	1.0	9
107	Intake of Heated Leaf Extract of Coriandrum sativum Contributes to Resistance to Oxidative Stress via Decreases in Heavy Metal Concentrations in the Kidney. Plant Foods for Human Nutrition, 2019, 74, 204-209.	1.4	9
108	The Expression of Relaxin-3 in Adipose Tissue and its Effects on Adipogenesis. Protein and Peptide Letters, 2014, 21, 517-522.	0.4	9

#	Article	IF	CITATIONS
109	Involvement of intracellular Zn ²⁺ signaling in LTP at perforant pathway–CA1 pyramidal cell synapse. Hippocampus, 2017, 27, 777-783.	0.9	8
110	Age-related vulnerability to nigral dopaminergic degeneration in rats via Zn2+-permeable GluR2-lacking AMPA receptor activation. NeuroToxicology, 2021, 83, 69-76.	1.4	8
111	Elimination of zinc-65 from the brain under kainate-induced seizures. BioMetals, 2004, 17, 141-144.	1.8	7
112	Release of amino acids by zinc in the hippocampus. Brain Research Bulletin, 2004, 63, 253-257.	1.4	7
113	Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex. Brain Research, 2006, 1118, 52-57.	1.1	7
114	Innervation from the entorhinal cortex to the dentate gyrus and the vulnerability to Zn 2+. Journal of Trace Elements in Medicine and Biology, 2016, 38, 19-23.	1.5	7
115	Is Vulnerability of the Dentate Gyrus to Aging and Amyloid-β _{1–42} Neurotoxicity Linked with Modified Extracellular Zn ²⁺ Dynamics?. Biological and Pharmaceutical Bulletin, 2018, 41, 995-1000.	0.6	7
116	Isoproterenol, an adrenergic \hat{l}^2 receptor agonist, induces metallothionein synthesis followed by canceling amyloid \hat{l}^2 1-42-induced neurodegeneration. BioMetals, 2022, 35, 303-312.	1.8	7
117	Rapid Intracellular Zn2+ Dysregulation via Membrane Corticosteroid Receptor Activation Affects In Vivo CA1 LTP. Molecular Neurobiology, 2019, 56, 1356-1365.	1.9	6
118	Difference in ability for extracellular Zn2+ influx between human and rat amyloid β1-42 and its significance. NeuroToxicology, 2019, 72, 1-5.	1.4	6
119	New insight into Parkinson's disease pathogenesis from reactive oxygen species-mediated extracellular Zn2+ influx. Journal of Trace Elements in Medicine and Biology, 2020, 61, 126545.	1.5	6
120	Dehydroeffusol Rescues Amyloid β25–35-InducedÂSpatial Working Memory Deficit. Plant Foods for Human Nutrition, 2020, 75, 279-282.	1.4	6
121	Change of zinc uptake under growth arrest and apoptosis. Anticancer Research, 2004, 24, 3869-74.	0.5	6
122	Enhancement of hippocampal mossy fiber activity in zinc deficiency and its influence on behavior. BioMetals, 2008, 21, 545-552.	1.8	5
123	Vulnerability to Seizures Induced by Potassium Dyshomeostasis in the Hippocampus in Aged Rats. Journal of Health Science, 2008, 54, 37-42.	0.9	5
124	Adrenergic β receptor activation in the basolateral amygdala, which is intracellular Zn2+-dependent, rescues amyloid β1-42-induced attenuation of dentate gyrus LTP. Neurochemistry International, 2018, 120, 43-48.	1.9	5
125	Yokukansan, a Herbal Medicine in Japan, Buffers Social Crowding Stress <i>via</i> Ameliorating Glucocorticoid Secretion Response to Vasopressin. Biological and Pharmaceutical Bulletin, 2018, 41, 920-924.	0.6	5
126	Amyloid β1–42-Induced Rapid Zn2+ Influx into Dentate Granule Cells Attenuates Maintained LTP Followed by Retrograde Amnesia. Molecular Neurobiology, 2019, 56, 5041-5050.	1.9	5

#	Article	IF	CITATIONS
127	Adrenergic β receptor activation reduces amyloid β1-42-mediated intracellular Zn2+ toxicity in dentate granule cells followed by rescuing impairment of dentate gyrus LTP. NeuroToxicology, 2020, 79, 177-183.	1.4	5
128	Intracellular hydrogen peroxide produced by 6-hydroxydopamine is a trigger for nigral dopaminergic degeneration of rats via rapid influx of extracellular Zn2+. NeuroToxicology, 2022, 89, 1-8.	1.4	5
129	Preventive effect of Ninjin-yoei-to, a Kampo medicine, on amyloid β ₁₋₄₂ -induced neurodegeneration via intracellular Zn ²⁺ toxicity in the dentate gyrus. Experimental Animals, 2021, 70, 514-521.	0.7	4
130	Dehydroeffusol Pprevents Amyloid β1-42-mediated Hippocampal Neurodegeneration via Reducing Intracellular Zn2+ Toxicity. Molecular Neurobiology, 2021, 58, 3603-3613.	1.9	4
131	Preventive Effect of 3,5-dihydroxy-4-methoxybenzyl Alcohol (DHMBA) and Zinc, Components of the Pacific Oyster <i>Crassostrea gigas</i> , on Glutamatergic Neuron Activity in the Hippocampus. Biological Bulletin, 2015, 229, 282-288.	0.7	3
132	CA1 LTP Attenuated by Corticosterone is Canceled by Effusol via Rescuing Intracellular Zn2+ Dysregulation. Cellular and Molecular Neurobiology, 2019, 39, 975-983.	1.7	3
133	Isoproterenol injected into the basolateral amygdala rescues amyloid β1-42-induced conditioned fear memory deficit via reducing intracellular Zn2+ toxicity. Neuroscience Letters, 2022, 766, 136353.	1.0	3
134	High K+-induced Increase in Extracellular Glutamate in Zinc Deficiency and Endogenous Zinc Action. Journal of Health Science, 2009, 55, 405-412.	0.9	2
135	Paraquat-induced intracellular Zn2+ dysregulation causes dopaminergic degeneration in the substantia nigra, but not in the striatum. NeuroToxicology, 2022, 90, 136-144.	1.4	2
136	Modification of hippocampal excitability in brain slices pretreated with a low nanomolar concentration of Zn ²⁺ . Journal of Neuroscience Research, 2015, 93, 1641-1647.	1.3	1
137	Retention Period of Amyloid β _{1–42} in the Brain Extracellular Fluid as the Toxicological Determinant in Freely Moving Rats. Biological and Pharmaceutical Bulletin, 2020, 43, 1975-1978.	0.6	1
138	Foreword. Biological and Pharmaceutical Bulletin, 2018, 41, 994-994.	0.6	0
139	Involvement of isoproterenol-induced intracellular Zn2+ dynamics in the basolateral amygdala in conditioned fear memory. BioMetals, 2022, 35, 1023-1031.	1.8	Ο