List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12059694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nature Materials, 2014, 13, 653-661.	27.5	419
2	Effect of Annular Shape on Leaflet Curvature in Reducing Mitral Leaflet Stress. Circulation, 2002, 106, 711-717.	1.6	407
3	Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11507-11512.	7.1	267
4	Extension of borderzone myocardium in postinfarction dilated cardiomyopathy. Journal of the American College of Cardiology, 2002, 40, 1160-1167.	2.8	189
5	Region- and Type-Specific Induction of Matrix Metalloproteinases in Post–Myocardial Infarction Remodeling. Circulation, 2003, 107, 2857-2863.	1.6	189
6	Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves. Journal of Thoracic and Cardiovascular Surgery, 2007, 133, 1028-1036.	0.8	185
7	Advances in the treatment of acute type a dissection: an integrated approach. Annals of Thoracic Surgery, 2002, 74, S1848-S1852.	1.3	182
8	Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. Journal of Thoracic and Cardiovascular Surgery, 1996, 112, 712-724.	0.8	171
9	Metabolite Exchange between Mammalian Organs Quantified in Pigs. Cell Metabolism, 2019, 30, 594-606.e3.	16.2	170
10	A technique for in vivo mapping of myocardial creatine kinase metabolism. Nature Medicine, 2014, 20, 209-214.	30.7	168
11	New Paradigms and Improved Results for the Surgical Treatment of Acute Type A Dissection. Annals of Surgery, 2001, 234, 336-343.	4.2	160
12	Sustained release of endothelial progenitor cell-derived extracellular vesicles from shear-thinning hydrogels improves angiogenesis and promotes function after myocardial infarction. Cardiovascular Research, 2018, 114, 1029-1040.	3.8	147
13	Restraining Infarct Expansion Preserves Left Ventricular Geometry and Function After Acute Anteroapical Infarction. Circulation, 1999, 99, 135-142.	1.6	146
14	Reduction of Ischemia/Reperfusion Injury With Bendavia, a Mitochondriaâ€Targeting Cytoprotective Peptide. Journal of the American Heart Association, 2012, 1, e001644.	3.7	130
15	Annuloplasty ring selection for chronic ischemic mitral regurgitation: lessons from the ovine model. Annals of Thoracic Surgery, 2003, 76, 1556-1563.	1.3	128
16	In-Vivo Dynamic Deformation of the Mitral Valve Anterior Leaflet. Annals of Thoracic Surgery, 2006, 82, 1369-1377.	1.3	122
17	Influence of Injectable Hyaluronic Acid Hydrogel Degradation Behavior on Infarction-Induced Ventricular Remodeling. Biomacromolecules, 2011, 12, 4127-4135.	5.4	119
18	Pathogenesis of Acute Aortic Dissection: A Finite Element Stress Analysis. Annals of Thoracic Surgery, 2011, 91, 458-463.	1.3	118

#	Article	IF	CITATIONS
19	Pathogenesis of acute ischemic mitral regurgitation in three dimensions. Journal of Thoracic and Cardiovascular Surgery, 1995, 109, 684-693.	0.8	117
20	Expression of Matrix Metalloproteinases and Endogenous Inhibitors Within Ascending Aortic Aneurysms of Patients With Marfan Syndrome. Circulation, 2006, 114, I365-70.	1.6	115
21	Acellular Biomaterials: An Evolving Alternative to Cell-Based Therapies. Science Translational Medicine, 2013, 5, 176ps4.	12.4	113
22	Selective MicroRNA Suppression in Human Thoracic Aneurysms. Circulation: Cardiovascular Genetics, 2011, 4, 605-613.	5.1	107
23	A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. Journal of Thoracic and Cardiovascular Surgery, 2007, 134, 1562-1568.	0.8	105
24	Allogeneic Mesenchymal Precursor Cell Therapy to Limit Remodeling After Myocardial Infarction: The Effect of Cell Dosage. Annals of Thoracic Surgery, 2009, 87, 794-801.	1.3	105
25	Infarct Size And Location Determine Development Of Mitral Regurgitation In The Sheep Model. Journal of Thoracic and Cardiovascular Surgery, 1998, 115, 615-622.	0.8	104
26	The effect of regional ischemia on mitral valve annular saddle shape. Annals of Thoracic Surgery, 2004, 77, 544-548.	1.3	103
27	Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic aneurysm. Cardiovascular Research, 2013, 100, 316-324.	3.8	103
28	Aortic size in acute type A dissection: implications for preventive ascending aortic replacement. European Journal of Cardio-thoracic Surgery, 2009, 35, 941-946.	1.4	100
29	Mesenchymal Cell Transplantation and Myocardial Remodeling After Myocardial Infarction. Circulation, 2009, 120, S220-9.	1.6	98
30	Injectable Shear-Thinning Hydrogels for Minimally Invasive Delivery to Infarcted Myocardium to Limit Left Ventricular Remodeling. Circulation: Cardiovascular Interventions, 2016, 9, .	3.9	98
31	Local Hydrogel Release of Recombinant TIMP-3 Attenuates Adverse Left Ventricular Remodeling After Experimental Myocardial Infarction. Science Translational Medicine, 2014, 6, 223ra21.	12.4	94
32	Distortions of the Mitral Valve in Acute Ischemic Mitral Regurgitation. Annals of Thoracic Surgery, 1997, 64, 1026-1031.	1.3	93
33	Cardiac Support Device Modifies Left Ventricular Geometry and Myocardial Structure After Myocardial Infarction. Circulation, 2005, 112, 1274-1283.	1.6	93
34	MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials, 2015, 69, 65-75.	11.4	91
35	Three-Dimensional Echocardiographic Analysis of Mitral Annular Dynamics. Circulation, 2012, 126, S183-8.	1.6	89
36	On the In Vivo Deformation of the Mitral Valve Anterior Leaflet: Effects of Annular Geometry and Referential Configuration. Annals of Biomedical Engineering, 2012, 40, 1455-1467.	2.5	89

3

#	Article	IF	CITATIONS
37	Saddle Shape of the Mitral Annulus Reduces Systolic Strains on the P2 Segment of the Posterior Mitral Leaflet. Annals of Thoracic Surgery, 2009, 88, 1499-1504.	1.3	88
38	Algisyl-LVRâ,,¢ with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. International Journal of Cardiology, 2013, 168, 2022-2028.	1.7	86
39	Increased Ascending Aortic Wall Stress in Patients With Bicuspid Aortic Valves. Annals of Thoracic Surgery, 2011, 92, 1384-1389.	1.3	80
40	Antioxidant Enzymes Reduce DNA Damage and Early Activation of Valvular Interstitial Cells in Aortic Valve Sclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, e66-74.	2.4	80
41	Prevention of ischemic mitral regurgitation does not influence the outcome of remodeling after posterolateral myocardial infarction. Journal of the American College of Cardiology, 2004, 43, 377-383.	2.8	78
42	An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in-vivo valvular biomaterial assessment. Journal of Biomechanics, 2014, 47, 2055-2063.	2.1	78
43	Border zone geometry increases wall stress after myocardial infarction: contrast echocardiographic assessment. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H475-H479.	3.2	74
44	Basal and Oxidative Stress–Induced Expression of Metallothionein Is Decreased in Ascending Aortic Aneurysms of Bicuspid Aortic Valve Patients. Circulation, 2009, 119, 2498-2506.	1.6	74
45	An ovine model of postinfarction dilated cardiomyopathy. Annals of Thoracic Surgery, 2002, 74, 753-760.	1.3	72
46	Aortic Dilatation With Bicuspid Aortic Valves: Cusp Fusion Correlates to Matrix Metalloproteinases and Inhibitors. Annals of Thoracic Surgery, 2012, 93, 457-463.	1.3	72
47	Changes in Mitral Valve Annular Geometry After Repair: Saddle-Shaped Versus Flat Annuloplasty Rings. Annals of Thoracic Surgery, 2010, 90, 1212-1220.	1.3	71
48	Heart Valve Biomechanics and Underlying Mechanobiology. , 2016, 6, 1743-1780.		68
49	The Influence of Annuloplasty Ring Geometry on Mitral Leaflet Curvature. Annals of Thoracic Surgery, 2008, 86, 749-760.	1.3	67
50	Effect of Geometry on the Leaflet Stresses in Simulated Models of Congenital Bicuspid Aortic Valves. Cardiovascular Engineering and Technology, 2011, 2, 48-56.	1.6	67
51	Infarct restraint attenuates remodeling and reduces chronic ischemic mitral regurgitation after postero-lateral infarction. Annals of Thoracic Surgery, 2002, 74, 444-449.	1.3	66
52	In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 37.	3.3	65
53	Ischemic Mitral Regurgitation: A Quantitative Three-Dimensional Echocardiographic Analysis. Annals of Thoracic Surgery, 2011, 91, 157-164.	1.3	64
54	A Novel Method for Quantifying the In-Vivo Mechanical Effect of Material Injected Into a Myocardial Infarction. Annals of Thoracic Surgery, 2011, 92, 935-941.	1.3	64

#	Article	IF	CITATIONS
55	Tricuspid Annular Geometry: A Three-Dimensional Transesophageal Echocardiographic Study. Journal of Cardiothoracic and Vascular Anesthesia, 2013, 27, 639-646.	1.3	63
56	Effect of Ventricular Size and Patch Stiffness in Surgical Anterior Ventricular Restoration: A Finite Element Model Study. Annals of Thoracic Surgery, 2005, 79, 185-193.	1.3	62
57	Three-Dimensional Echocardiographic Assessment of Changes in Mitral Valve Geometry After Valve Repair. Annals of Thoracic Surgery, 2009, 88, 1838-1844.	1.3	62
58	Three-Dimensional Ultrasound-Derived PhysicalÂMitral Valve Modeling. Annals of Thoracic Surgery, 2014, 98, 691-694.	1.3	62
59	Use of computational fluid dynamics studies in predicting aneurysmal degeneration of acute type BÂaortic dissections. Journal of Vascular Surgery, 2015, 62, 279-284.	1.1	62
60	Quantitative Mitral Valve Modeling Using Real-Time Three-Dimensional Echocardiography: Technique and Repeatability. Annals of Thoracic Surgery, 2011, 91, 165-171.	1.3	60
61	On the effects of leaflet microstructure and constitutive model on the closing behavior of the mitral valve. Biomechanics and Modeling in Mechanobiology, 2015, 14, 1281-1302.	2.8	60
62	Early Ventricular Restraint After Myocardial Infarction: Extent of the Wrap Determines the Outcome of Remodeling. Annals of Thoracic Surgery, 2005, 79, 881-887.	1.3	59
63	Description of regional mitral annular nonplanarity in healthy human subjects: A novel methodology. Journal of Thoracic and Cardiovascular Surgery, 2007, 134, 644-648.	0.8	54
64	Modification of Infarct Material Properties Limits Adverse Ventricular Remodeling. Annals of Thoracic Surgery, 2011, 92, 617-624.	1.3	54
65	Human myxomatous mitral valve prolapse: Role of bone morphogenetic protein 4 in valvular interstitial cell activation. Journal of Cellular Physiology, 2012, 227, 2595-2604.	4.1	54
66	Dynamic 3-Dimensional Echocardiographic Assessment of Mitral Annular Geometry in Patients With Functional Mitral Regurgitation. Annals of Thoracic Surgery, 2013, 95, 105-110.	1.3	54
67	First Evidence of Depressed Contractility in the Border Zone of a Human Myocardial Infarction. Annals of Thoracic Surgery, 2012, 93, 1188-1193.	1.3	53
68	Regional Annular Geometry in Patients With Mitral Regurgitation: Implications for Annuloplasty Ring Selection. Annals of Thoracic Surgery, 2014, 97, 64-70.	1.3	53
69	Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations. Biomechanics and Modeling in Mechanobiology, 2015, 14, 633-647.	2.8	53
70	Preoperative Three-Dimensional Valve Analysis Predicts Recurrent Ischemic Mitral Regurgitation After Mitral Annuloplasty. Annals of Thoracic Surgery, 2016, 101, 567-575.	1.3	53
71	Mild Hypothermia to Limit Myocardial Ischemia-Reperfusion Injury: Importance of Timing. Annals of Thoracic Surgery, 2009, 87, 157-163.	1.3	52
72	Ventricular Restraint Prevents Infarct Expansion and Improves Borderzone Function After Myocardial Infarction: A Study Using Magnetic Resonance Imaging, Three-Dimensional Surface Modeling, and Myocardial Tagging. Annals of Thoracic Surgery, 2007, 84, 2004-2010.	1.3	50

#	Article	IF	CITATIONS
73	Quantification and simulation of layer-specific mitral valve interstitial cells deformation under physiological loading. Journal of Theoretical Biology, 2015, 373, 26-39.	1.7	50
74	A Contemporary Look at Biomechanical Models of Myocardium. Annual Review of Biomedical Engineering, 2019, 21, 417-442.	12.3	50
75	In Vivo Dynamic Deformation of the Mitral Valve Annulus. Annals of Biomedical Engineering, 2009, 37, 1757-1771.	2.5	49
76	Fibrillin and other matrix proteins in mitral valve prolapse syndrome. Annals of Thoracic Surgery, 2004, 77, 532-536.	1.3	48
77	Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate. Biomaterials, 2007, 28, 690-699.	11.4	48
78	Dermal Filler Injection: A Novel Approach for Limiting Infarct Expansion. Annals of Thoracic Surgery, 2009, 87, 148-155.	1.3	48
79	Osteopontin–CD44v6 Interaction Mediates Calcium Deposition via Phospho-Akt in Valve Interstitial Cells From Patients With Noncalcified Aortic Valve Sclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2086-2094.	2.4	47
80	Deformation analysis of 3D tagged cardiac images using an optical flow method. Journal of Cardiovascular Magnetic Resonance, 2010, 12, 19.	3.3	46
81	Regenerative healing following foetal myocardial infarctionâ~†â~†â~†. European Journal of Cardio-thoracic Surgery, 2010, 38, 691-698.	1.4	46
82	A methodology for assessing human mitral leaflet curvature using real-time 3-dimensional echocardiography. Journal of Thoracic and Cardiovascular Surgery, 2008, 136, 726-734.	0.8	45
83	On the Simulation of Mitral Valve Function in Health, Disease, and Treatment. Journal of Biomechanical Engineering, 2019, 141, .	1.3	45
84	Fenfluramine Disrupts the Mitral Valve Interstitial Cell Response to Serotonin. American Journal of Pathology, 2009, 175, 988-997.	3.8	44
85	Noggin attenuates the osteogenic activation of human valve interstitial cells in aortic valve sclerosis. Cardiovascular Research, 2013, 98, 402-410.	3.8	44
86	Rotating frame spin lattice relaxation in a swine model of chronic, left ventricular myocardial infarction. Magnetic Resonance in Medicine, 2010, 64, 1453-1460.	3.0	43
87	Early Postinfarction Ventricular Restraint Improves Borderzone Wall Thickening Dynamics During Remodeling. Annals of Thoracic Surgery, 2005, 80, 2257-2262.	1.3	42
88	Peak Wall Stress Predicts Expansion Rate in Descending Thoracic Aortic Aneurysms. Annals of Thoracic Surgery, 2013, 95, 593-598.	1.3	42
89	Preclinical Evaluation of the Engineered Stem Cell Chemokine Stromal Cell–Derived Factor 1α Analog in a Translational Ovine Myocardial Infarction Model. Circulation Research, 2014, 114, 650-659.	4.5	42
90	Saddle-Shape Annuloplasty Increases Mitral Leaflet Coaptation After Repair for Flail Posterior Leaflet. Annals of Thoracic Surgery, 2011, 92, 797-803.	1.3	41

#	Article	IF	CITATIONS
91	Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. Journal of Biomechanics, 2012, 45, 903-907.	2.1	41
92	Local wall thickness in finite element models improves prediction of abdominal aortic aneurysm growth. Journal of Vascular Surgery, 2015, 61, 217-223.	1.1	41
93	Recommendations of the National Heart, Lung, and Blood Institute Working Group on Future Direction in Cardiac Surgery. Circulation, 2005, 111, 3007-3013.	1.6	40
94	Tunable hydrogel-microsphere composites that modulate local inflammation and collagen bulking. Acta Biomaterialia, 2012, 8, 3218-3227.	8.3	40
95	An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium. Biomechanics and Modeling in Mechanobiology, 2018, 17, 31-53.	2.8	40
96	Regulation of valve interstitial cell homeostasis by mechanical deformation: implications for heart valve disease and surgical repair. Journal of the Royal Society Interface, 2017, 14, 20170580.	3.4	38
97	Mitral valve repair for post-myocardial infarction papillary muscle rupture. European Journal of Cardio-thoracic Surgery, 2013, 44, 1063-1069.	1.4	37
98	A noninvasive method for the determination of <i>in vivo</i> mitral valve leaflet strains. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e3142.	2.1	37
99	Surgical treatment of ischemic mitral regurgitation might not influence ventricular remodeling. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 504-511.	0.8	36
100	Very Mild Hypothermia During Ischemia and Reperfusion Improves Postinfarction Ventricular Remodeling. Annals of Thoracic Surgery, 2009, 87, 172-177.	1.3	36
101	Percutaneous Transvenous Melody Valve-in-Ring Procedure for Mitral Valve Replacement. Journal of the American College of Cardiology, 2011, 58, 2475-2480.	2.8	36
102	In Vitro Mitral Valve Simulator Mimics Systolic Valvular Function of Chronic Ischemic Mitral Regurgitation Ovine Model. Annals of Thoracic Surgery, 2013, 95, 825-830.	1.3	36
103	Circulating Soluble Receptor for Advanced Glycation End Product Identifies Patients With Bicuspid Aortic Valve and Associated Aortopathies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2349-2357.	2.4	36
104	Mitral Valve Chordae Tendineae: Topological and Geometrical Characterization. Annals of Biomedical Engineering, 2017, 45, 378-393.	2.5	36
105	Infarct Restraint to Limit Adverse Ventricular Remodeling. Journal of Cardiovascular Translational Research, 2011, 4, 73-81.	2.4	35
106	Ventricular Constraint Using the Acorn Cardiac Support Device Reduces Myocardial Akinetic Area in an Ovine Model of Acute Infarction. Circulation, 2002, 106, .	1.6	35
107	Ventricular constraint using the acorn cardiac support device reduces myocardial akinetic area in an ovine model of acute infarction. Circulation, 2002, 106, I207-11.	1.6	35
108	Akinetic myocardial infarcts must contain contracting myocytes: finite-element model study. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1844-H1850.	3.2	34

#	Article	IF	CITATIONS
109	Cyclosporine Preserves Mitochondrial Morphology After Myocardial Ischemia/Reperfusion Independent of Calcineurin Inhibition. Annals of Thoracic Surgery, 2008, 86, 1286-1292.	1.3	34
110	The Influence of Mitral Annuloplasty on Left Ventricular Flow Dynamics. Annals of Thoracic Surgery, 2015, 100, 114-121.	1.3	34
111	Fluorescence spectroscopy and imaging of myocardial apoptosis. Journal of Biomedical Optics, 2006, 11, 064036.	2.6	33
112	Assessing Myocardial Disease Using T1ï•MRI. Current Cardiovascular Imaging Reports, 2014, 7, 9248.	0.6	33
113	Theoretic Impact of Infarct Compliance on Left Ventricular Function. Annals of Thoracic Surgery, 2009, 87, 803-810.	1.3	32
114	Tricuspid Annulus: A Three-Dimensional Deconstruction and Reconstruction. Annals of Thoracic Surgery, 2014, 98, 1536-1542.	1.3	32
115	In-vivo heterogeneous functional and residual strains in human aortic valve leaflets. Journal of Biomechanics, 2016, 49, 2481-2490.	2.1	32
116	The Dynamic Anterior Mitral Annulus. Annals of Thoracic Surgery, 2004, 78, 1248-1255.	1.3	31
117	Dephosphorylation of circulating human osteopontin correlates with severe valvular calcification in patients with calcific aortic valve disease. Biomarkers, 2012, 17, 111-118.	1.9	31
118	Long-term survival after mitral valve surgery for post-myocardial infarction papillary muscle rupture. Journal of Cardiothoracic Surgery, 2015, 10, 11.	1.1	31
119	How Local Annular Force and Collagen Density Govern Mitral Annuloplasty Ring Dehiscence Risk. Annals of Thoracic Surgery, 2016, 102, 518-526.	1.3	31
120	Regional and Global Patterns of Annular Remodeling in Ischemic Mitral Regurgitation. Annals of Thoracic Surgery, 2007, 84, 553-559.	1.3	30
121	Quantifying Acute Myocardial Injury Using Ratiometric Fluorometry. IEEE Transactions on Biomedical Engineering, 2009, 56, 1556-1563.	4.2	30
122	Increased Wall Stress of Saccular Versus Fusiform Aneurysms of the Descending Thoracic Aorta. Annals of Vascular Surgery, 2011, 25, 1129-1137.	0.9	30
123	Melody Valve Implantation Into the Branch Pulmonary Arteries for Treatment of Pulmonary Insufficiency in an Ovine Model of Right Ventricular Outflow Tract Dysfunction Following Tetralogy of Fallot Repair. Circulation: Cardiovascular Interventions, 2011, 4, 80-87.	3.9	29
124	Development of a semi-automated method for mitral valve modeling with medial axis representation using 3D ultrasound. Medical Physics, 2012, 39, 933-950.	3.0	29
125	Melody Valve-in-Ring Procedure for Mitral Valve Replacement: Feasibility in Four Annuloplasty Types. Annals of Thoracic Surgery, 2012, 93, 783-788.	1.3	29
126	Infarct Size Reduction and Attenuation of Global Left Ventricular Remodeling with the CorCapTM Cardiac Support Device Following Acute Myocardial Infarction in Sheep. Heart Failure Reviews, 2005, 10, 125-139.	3.9	28

#	Article	IF	CITATIONS
127	Cardiac retransplantation is an efficacious therapy for primary cardiac allograft failure. Journal of Cardiothoracic Surgery, 2008, 3, 26.	1.1	28
128	Temporal Changes in Infarct Material Properties: An InÂVivo Assessment Using Magnetic Resonance Imaging and Finite Element Simulations. Annals of Thoracic Surgery, 2015, 100, 582-589.	1.3	28
129	Development of a Functionally Equivalent Model of the Mitral Valve Chordae Tendineae Through Topology Optimization. Annals of Biomedical Engineering, 2019, 47, 60-74.	2.5	28
130	The Emerging Role of Three-Dimensional Echocardiography in Mitral Valve Repair. Seminars in Thoracic and Cardiovascular Surgery, 2006, 18, 126-134.	0.6	27
131	Triglycidyl Amine Crosslinking Combined With Ethanol Inhibits Bioprosthetic Heart Valve Calcification. Annals of Thoracic Surgery, 2011, 92, 858-865.	1.3	27
132	Posterior leaflet augmentation improves leaflet tethering in repair of ischemic mitral regurgitation. European Journal of Cardio-thoracic Surgery, 2011, 40, 1501-7; discussion 1507.	1.4	27
133	Elimination of Ischemic Mitral Regurgitation Does Not Alter Long-Term Left Ventricular Remodeling in the Ovine Model. Annals of Thoracic Surgery, 2010, 90, 788-794.	1.3	26
134	Impact of Wall Thickness and Saccular Geometry on the Computational Wall Stress of Descending Thoracic Aortic Aneurysms. Circulation, 2013, 128, S157-62.	1.6	26
135	Medially constrained deformable modeling for segmentation of branching medial structures: Application to aortic valve segmentation and morphometry. Medical Image Analysis, 2015, 26, 217-231.	11.6	26
136	The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, 847-859.	0.8	26
137	In Vivo Fluorometric Assessment of Cyclosporine on Mitochondrial Function During Myocardial Ischemia and Reperfusion. Annals of Thoracic Surgery, 2010, 89, 1532-1537.	1.3	25
138	Infarction Induced Myocardial Apoptosis and ARC Activation. Journal of Surgical Research, 2011, 166, 59-67.	1.6	25
139	Statistical Assessment of Normal Mitral Annular Geometry Using Automated Three-Dimensional Echocardiographic Analysis. Annals of Thoracic Surgery, 2014, 97, 71-77.	1.3	25
140	On the in vivo function of the mitral heart valve leaflet: insights into tissue–interstitial cell biomechanical coupling. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1613-1632.	2.8	25
141	A novel approach to in vivo mitral valve stress analysis. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1790-H1794.	3.2	24
142	Dynamic Assessment of Mitral Annular Force Profile in an Ovine Model. Annals of Thoracic Surgery, 2012, 94, 59-65.	1.3	24
143	Targeted Injection of a Biocomposite Material Alters Macrophage and Fibroblast Phenotype and Function following Myocardial Infarction: Relation to Left Ventricular Remodeling. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 701-709.	2.5	24
144	Assessment of myocardial injury after reperfused infarction by T1ϕcardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 17.	3.3	24

#	Article	IF	CITATIONS
145	Is the Myofibrillarlytic Myocyte a Forme Fruste Apoptotic Myocyte?. Annals of Thoracic Surgery, 2005, 79, 1333-1337.	1.3	23
146	Mitral Valve Tenting Index for Assessment of Subvalvular Remodeling. Annals of Thoracic Surgery, 2007, 84, 1243-1249.	1.3	23
147	Mammalian Fetal Cardiac Regeneration After Myocardial Infarction Is Associated With Differential Gene Expression Compared WithÂtheÂAdult. Annals of Thoracic Surgery, 2014, 97, 1643-1650.	1.3	23
148	Validation of semiautomated and locally resolved aortic wall thickness measurements from computed tomography. Journal of Vascular Surgery, 2015, 61, 1034-1040.	1.1	23
149	A High-Fidelity and Micro-anatomically Accurate 3D Finite Element Model for Simulations of Functional Mitral Valve. Lecture Notes in Computer Science, 2013, 7945, 416-424.	1.3	23
150	The influence of saddle-shaped annuloplasty on leaflet curvature in patients with ischaemic mitral regurgitationâ€. European Journal of Cardio-thoracic Surgery, 2012, 42, 493-499.	1.4	22
151	Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103508.	3.1	22
152	Iron imaging in myocardial infarction reperfusion injury. Nature Communications, 2020, 11, 3273.	12.8	22
153	Age-related enhanced degeneration of bioprosthetic valves due to leaflet calcification, tissue crosslinking, and structural changes. Cardiovascular Research, 2023, 119, 302-315.	3.8	22
154	Borderzone Geometry After Acute Myocardial Infarction: A Three-Dimensional Contrast Enhanced Echocardiographic Study. Annals of Thoracic Surgery, 2005, 80, 2250-2255.	1.3	21
155	Efficacy of the Edge-to-Edge Repair in the Setting of a Dilated Ventricle: An In Vitro Study. Annals of Thoracic Surgery, 2007, 84, 1578-1584.	1.3	21
156	In vivo biomechanical assessment of triglycidylamine crosslinked pericardium. Biomaterials, 2007, 28, 5390-5398.	11.4	21
157	Regional Heterogeneity of Myocardial Reperfusion Injury: Effect of Mild Hypothermia. Annals of Thoracic Surgery, 2009, 87, 164-171.	1.3	21
158	Patient-Specific Modeling of Heart Valves: From Image to Simulation. Lecture Notes in Computer Science, 2013, 7945, 141-149.	1.3	21
159	Regional Myocardial Three-Dimensional Principal Strains During Postinfarction Remodeling. Annals of Thoracic Surgery, 2015, 99, 770-778.	1.3	21
160	Targeted Regional Injection of Biocomposite Microspheres Alters Post–Myocardial Infarction Remodeling and Matrix Proteolytic Pathways. Circulation, 2011, 124, S35-45.	1.6	20
161	Posterior Leaflet Augmentation in Ischemic Mitral Regurgitation Increases Leaflet Coaptation and Mobility. Annals of Thoracic Surgery, 2012, 94, 1438-1445.	1.3	20
162	Saddle-Shaped Annuloplasty Improves Leaflet Coaptation in Repair for Ischemic Mitral Regurgitation. Annals of Thoracic Surgery, 2015, 100, 1360-1366.	1.3	20

#	Article	IF	CITATIONS
163	Quantification of Left Ventricular Function With Premature Ventricular Complexes Reveals Variable Hemodynamics. Circulation: Arrhythmia and Electrophysiology, 2016, 9, e003520.	4.8	20
164	Implantation of the Medtronic Harmony Transcatheter Pulmonary Valve Improves Right Ventricular Size and Function in an Ovine Model of Postoperative Chronic Pulmonary Insufficiency. Circulation: Cardiovascular Interventions, 2016, 9, .	3.9	20
165	Mitral valve leaflet response to ischaemic mitral regurgitation: from gene expression to tissue remodelling. Journal of the Royal Society Interface, 2020, 17, 20200098.	3.4	20
166	Retransplantation of a cardiac allograft inadvertently harvested from a donor with metastatic melanoma1. Transplantation, 2003, 76, 741-743.	1.0	19
167	Progression of myocardial injury during coronary occlusion in the collateral-deficient heart: a non-wavefront phenomenon. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1799-H1804.	3.2	19
168	The Effect of Surgical and Transcatheter Aortic Valve Replacement on Mitral Annular Anatomy. Annals of Thoracic Surgery, 2013, 95, 614-619.	1.3	19
169	Optimized Local Infarct Restraint Improves Left Ventricular Function and Limits Remodeling. Annals of Thoracic Surgery, 2013, 95, 155-162.	1.3	19
170	Predictors of in-hospital mortality after mitral valve surgery for post-myocardial infarction papillary muscle rupture. Journal of Cardiothoracic Surgery, 2014, 9, 171.	1.1	19
171	Suture Forces in Undersized Mitral Annuloplasty: Novel Device and Measurements. Annals of Thoracic Surgery, 2014, 98, 305-309.	1.3	19
172	User-initialized active contour segmentation and golden-angle real-time cardiovascular magnetic resonance enable accurate assessment of LV function in patients with sinus rhythm and arrhythmias. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 37.	3.3	19
173	Multi-resolution geometric modeling of the mitral heart valve leaflets. Biomechanics and Modeling in Mechanobiology, 2018, 17, 351-366.	2.8	19
174	Glycation and Serum Albumin Infiltration Contribute to the Structural Degeneration of Bioprosthetic Heart Valves. JACC Basic To Translational Science, 2020, 5, 755-766.	4.1	19
175	Comparison of transesophageal echocardiographic analysis and circulating biomarker expression profile in calcific aortic valve disease. Journal of Heart Valve Disease, 2013, 22, 156-65.	0.5	19
176	Real-Time Magnetic Resonance Imaging TechniqueÂfor Determining Left Ventricle Pressure-Volume Loops. Annals of Thoracic Surgery, 2014, 97, 1597-1603.	1.3	18
177	Effects of using the unloaded configuration in predicting the <i>in vivo</i> diastolic properties of the heart. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 1714-1720.	1.6	18
178	Computational Modeling of Healthy Myocardium in Diastole. Annals of Biomedical Engineering, 2016, 44, 980-992.	2.5	18
179	Effects of hydrogel injection on borderzone contractility post-myocardial infarction. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1533-1542.	2.8	18
180	Toward predictive modeling of catheterâ€based pulmonary valve replacement into native right ventricular outflow tracts. Catheterization and Cardiovascular Interventions, 2019, 93, E143-E152.	1.7	18

#	Article	IF	CITATIONS
181	Mammalian Cardiac Regeneration After Fetal Myocardial Infarction Requires Cardiac Progenitor Cell Recruitment. Annals of Thoracic Surgery, 2013, 96, 163-170.	1.3	17
182	Pre-surgical Prediction of Ischemic Mitral Regurgitation Recurrence Using In Vivo Mitral Valve Leaflet Strains. Annals of Biomedical Engineering, 2021, 49, 3711-3723.	2.5	17
183	Image Segmentation and Modeling of the Pediatric Tricuspid Valve in Hypoplastic Left Heart Syndrome. Lecture Notes in Computer Science, 2017, 10263, 95-105.	1.3	17
184	Surgery for Asymptomatic Severe Mitral Regurgitation in the Elderly. Circulation, 2006, 114, 258-260.	1.6	16
185	How hydrogel inclusions modulate the local mechanical response in early and fully formed post-infarcted myocardium. Acta Biomaterialia, 2020, 114, 296-306.	8.3	16
186	Automated Segmentation and Geometrical Modeling of the Tricuspid Aortic Valve in 3D Echocardiographic Images. Lecture Notes in Computer Science, 2013, 16, 485-492.	1.3	16
187	Augmented Mitral Valve Leaflet Area Decreases Leaflet Stress: A Finite Element Simulation. Annals of Thoracic Surgery, 2012, 93, 1141-1145.	1.3	15
188	Mitral annuloplasty ring suture forces: Impact of surgeon, ring, and use conditions. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 131-139.e3.	0.8	15
189	On the in vivo systolic compressibility of left ventricular free wall myocardium in the normal and infarcted heart. Journal of Biomechanics, 2020, 107, 109767.	2.1	15
190	The Button Jejunostomy for Longâ€īerm Jejunal Feeding: Results of a Prospective Randomized Trial. Journal of Parenteral and Enteral Nutrition, 1993, 17, 428-431.	2.6	14
191	In-vivo transducer to measure dynamic mitral annular forces. Journal of Biomechanics, 2012, 45, 1514-1516.	2.1	14
192	Integrated Regional Cardiac Hemodynamic Imaging and RNA Sequencing Reveal Corresponding Heterogeneity of Ventricular Wall Shear Stress and Endocardial Transcriptome. Journal of the American Heart Association, 2016, 5, e003170.	3.7	14
193	Annuloplasty Ring Dehiscence in Ischemic Mitral Regurgitation. Annals of Thoracic Surgery, 2012, 94, 2132.	1.3	13
194	Contractile mitral annular forces are reduced with ischemic mitral regurgitation. Journal of Thoracic and Cardiovascular Surgery, 2013, 146, 422-428.	0.8	13
195	Computational sensitivity investigation of hydrogel injection characteristics for myocardial support. Journal of Biomechanics, 2017, 64, 231-235.	2.1	13
196	Changes in mitral annular geometry after aortic valve replacement: a three-dimensional transesophageal echocardiographic study. Journal of Heart Valve Disease, 2012, 21, 696-701.	0.5	13
197	The potential role of ventricular compressive therapy. Surgical Clinics of North America, 2004, 84, 45-59.	1.5	12
198	Influence of inotropy and chronotropy on the mitral valve sphincter mechanism. Annals of Thoracic Surgery, 2004, 77, 852-857.	1.3	12

#	Article	IF	CITATIONS
199	Spatial phenotyping of the endocardial endothelium as a function of intracardiac hemodynamic shear stress. Journal of Biomechanics, 2017, 50, 11-19.	2.1	12
200	Effects of hemodynamic alterations on anterior mitral leaflet curvature during systole. Journal of Thoracic and Cardiovascular Surgery, 2006, 132, 1414-1419.	0.8	11
201	Role of acetaminophen in acute myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2424-H2431.	3.2	11
202	Sutureless Mitral Valve Replacement: Initial Steps Toward a Percutaneous Procedure. Annals of Thoracic Surgery, 2013, 96, 670-674.	1.3	11
203	Sensitivity of left ventricular mechanics to myofiber architecture: A finite element study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2016, 230, 594-598.	1.8	11
204	Mitral Valve Surgery for Heart Failure: A Failed Innovation?. Seminars in Thoracic and Cardiovascular Surgery, 2006, 18, 135-138.	0.6	10
205	In-Vivo Analysis of Selectively Flexible Mitral Annuloplasty Rings Using Three-Dimensional Echocardiography. Annals of Thoracic Surgery, 2014, 97, 2005-2010.	1.3	10
206	Injectable Microsphere Gel Progressively ImprovesÂGlobal Ventricular Function, Regional Contractile Strain, and Mitral Regurgitation AfterÂMyocardial Infarction. Annals of Thoracic Surgery, 2015, 99, 597-603.	1.3	10
207	Computational Investigation of Transmural Differences in Left Ventricular Contractility. Journal of Biomechanical Engineering, 2016, 138, .	1.3	10
208	Patient-Specific Quantification of Normal and Bicuspid Aortic Valve Leaflet Deformations from Clinically Derived Images. Annals of Biomedical Engineering, 2022, 50, 1-15.	2.5	10
209	Localized targeting of biomaterials following myocardial infarction: A foundation to build on. Trends in Cardiovascular Medicine, 2013, 23, 301-311.	4.9	9
210	Mitral Valves: A Computational Framework. , 2015, , 223-255.		9
211	Real-time recording of annuloplasty suture dehiscence reveals a potential mechanism for dehiscence cascade. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, e15-e17.	0.8	9
212	Modeling the Myxomatous Mitral Valve With Three-Dimensional Echocardiography. Annals of Thoracic Surgery, 2016, 102, 703-710.	1.3	9
213	Self-gated MRI of multiple beat morphologies in the presence of arrhythmias. Magnetic Resonance in Medicine, 2017, 78, 678-688.	3.0	9
214	Mitral annuloplasty ring flexibility preferentially reduces posterior suture forces. Journal of Biomechanics, 2018, 75, 58-66.	2.1	9
215	Effect of Reperfusion on Left Ventricular Regional Remodeling Strains After Myocardial Infarction. Annals of Thoracic Surgery, 2007, 84, 1528-1536.	1.3	8
216	Regional Heterogeneity in the Mitral ValveÂApparatus in Patients With IschemicÂMitral Regurgitation. Annals of Thoracic Surgery, 2017, 103, 1171-1177.	1.3	8

#	Article	IF	CITATIONS
217	In-vivo mitral annuloplasty ring transducer: Implications for implantation and annular downsizing. Journal of Biomechanics, 2013, 46, 2550-2553.	2.1	7
218	Cardiac Progenitor Cell Recruitment Drives Fetal Cardiac Regeneration by Enhanced Angiogenesis. Annals of Thoracic Surgery, 2017, 104, 1968-1975.	1.3	7
219	Optimized mitral annuloplasty ring design reduces loading in the posterior annulus. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1766-1774.e2.	0.8	7
220	The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart. Scientific Reports, 2021, 11, 13466.	3.3	7
221	Segmentation of the Aortic Valve Apparatus in 3D Echocardiographic Images: Deformable Modeling of a Branching Medial Structure. Lecture Notes in Computer Science, 2015, 8896, 196-203.	1.3	7
222	Stent-based delivery of AAV2 vectors encoding oxidation-resistant apoA1. Scientific Reports, 2022, 12, 5464.	3.3	7
223	Enteroenteric intussusception due to a metastatic malignant fibrous histiocytoma. Journal of Surgical Oncology, 1993, 54, 203-205.	1.7	6
224	Why Should We Repair Ischemic Mitral Regurgitation?. Annals of Thoracic Surgery, 2006, 81, 785.	1.3	6
225	Directed Epicardial Assistance in Ischemic Cardiomyopathy: Flow and Function Using CardiacÂMagnetic Resonance Imaging. Annals of Thoracic Surgery, 2013, 96, 577-585.	1.3	6
226	RV mass measurement at endâ€systole: Improved accuracy, Reproducibility, and reduced segmentation time. Journal of Magnetic Resonance Imaging, 2015, 42, 1291-1296.	3.4	6
227	Differential Expression of Transforming Growth Factor-β1 Is Associated With Fetal Regeneration After Myocardial Infarction. Annals of Thoracic Surgery, 2019, 108, 59-66.	1.3	6
228	Pathophysiology of ischemic mitral insufficiency: Does repair make a difference?. Heart Failure Reviews, 2006, 11, 219-229.	3.9	5
229	Impact of endâ€diastolic and endâ€systolic phase selection in the volumetric evaluation of cardiac MRI. Journal of Magnetic Resonance Imaging, 2016, 43, 585-593.	3.4	5
230	Modeling of Myocardium Compressibility and its Impact in Computational Simulations of the Healthy and Infarcted Heart. Lecture Notes in Computer Science, 2017, 10263, 493-501.	1.3	5
231	Quantitative Description of Mitral Valve Geometry Using Real-Time Three-Dimensional Echocardiography. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2007, 2, 237-244.	0.9	4
232	Feasibility of In Vivo Human Aortic Valve Modeling Using Real-Time Three-Dimensional Echocardiography. Annals of Thoracic Surgery, 2014, 97, 1255-1258.	1.3	4
233	Spatiotemporal Segmentation and Modeling of the Mitral Valve in Real-Time 3D Echocardiographic Images. Lecture Notes in Computer Science, 2017, 10433, 746-754.	1.3	4
234	Intraoperative post-annuloplasty three-dimensional valve analysis does not predict recurrent ischemic mitral regurgitation. Journal of Cardiothoracic Surgery, 2020, 15, 161.	1.1	4

#	Article	IF	CITATIONS
235	Magnetic susceptibility and R2* of myocardial reperfusion injury at 3T and 7T. Magnetic Resonance in Medicine, 2022, 87, 323-336.	3.0	4
236	Dynamic Volumetric Assessment of the Aortic Root: The Influence of Bicuspid Aortic Valve Competence. Annals of Thoracic Surgery, 2021, 112, 1317-1324.	1.3	4
237	4D-transesophageal echocardiography and emerging imaging modalities for guiding mitral valve repair. Annals of Cardiothoracic Surgery, 2015, 4, 461-2.	1.7	4
238	A model of ischemic mitral regurgitation in pigs with three-dimensional echocardiographic assessment. Journal of Heart Valve Disease, 2014, 23, 713-20.	0.5	4
239	Minimally Invasive Delivery of a Novel Direct Epicardial Assist Device in a Porcine Heart Failure Model. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2014, 9, 16-21.	0.9	3
240	Quantitative analysis of 3-dimensional aortic annular geometry: Implication for aortic root reimplantation. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 1103-1105.	0.8	3
241	The Post–Myocardial Infarction Pacing Remodeling Prevention Therapy (PRomPT) Trial: Design and Rationale. Journal of Cardiac Failure, 2015, 21, 601-607.	1.7	3
242	Slice-by-Slice Pressure-Volume Loop Analysis Demonstrates Native Differences in Regional Cardiac Contractility and Response to Inotropic Agents. Annals of Thoracic Surgery, 2016, 102, 796-802.	1.3	3
243	Altered Responsiveness to TGFÎ ² and BMP and Increased CD45+ Cell Presence in Mitral Valves Are Unique Features of Ischemic Mitral Regurgitation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2049-2062.	2.4	3
244	Infarction Induced Ventricular Remodeling. Annals of Thoracic Surgery, 2004, 78, 1507-1510.	1.3	2
245	The Mechanics of the Fibrosed/Remodeled Heart. Developments in Cardiovascular Medicine, 2005, , 149-163.	0.1	2
246	Development of Off-Pump Mitral Valve Replacement in a Porcine Model. Annals of Thoracic Surgery, 2015, 99, 1408-1412.	1.3	2
247	Myocardial tissue salvage is correlated with ischemic border region temperature at reperfusion. Catheterization and Cardiovascular Interventions, 2020, 96, E593-E601.	1.7	2
248	Quantitative Description of Mitral Valve Geometry Using Real-Time Three-Dimensional Echocardiography. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2007, 2, 237-244.	0.9	2
249	Closed-loop control of k-space sampling via physiologic feedback for cine MRI. PLoS ONE, 2020, 15, e0244286.	2.5	2
250	Chronic Ischemic Mitral Regurgitation: Toward a Solution or Still an Enigma? Reply. Annals of Thoracic Surgery, 2005, 79, 752-753.	1.3	1
251	A Clinical Commentary on the Article "Injectable Acellular Hydrogels for Cardiac Repair― Journal of Cardiovascular Translational Research, 2011, 4, 543-4.	2.4	1
252	Continuous adaptive radial sampling of k-space from real-time physiologic feedback in MRI. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P37.	3.3	1

#	Article	IF	CITATIONS
253	Mitral annuloplasty ring suture dehiscence: In search of more robust techniques. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, 1640.	0.8	1
254	Hydromorphone-induced Neurostimulation in a Yorkshire Swine (Sus scrofa) after Myocardial Infarction Surgery. Journal of the American Association for Laboratory Animal Science, 2019, 58, 601-605.	1.2	1
255	Commentary: Three-dimensional P3 tethering angle at the heart of future surgical decision making in ischemic mitral regurgitation. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 1806-1807.	0.8	1
256	Injectable Shear-Thinning Hydrogels Prevent Ischemic Mitral Regurgitation and Normalize Ventricular Flow Dynamics. Seminars in Thoracic and Cardiovascular Surgery, 2020, 32, 445-453.	0.6	1
257	Sheep Models of Postinfarction Left Ventricular Remodeling. Progress in Experimental Cardiology, 2003, , 231-243.	0.0	1
258	Progenitor Cells for the Treatment of Acute Myocardial Infarction. Advances in Skin and Wound Care, 2010, 1, 519-525.	1.0	1
259	An ovine model of pulmonary insufficiency and right ventricular outflow tract dilatation. Journal of Heart Valve Disease, 2012, 21, 247-52.	0.5	1
260	Fully Automated 3D Segmentation and Diffeomorphic Medial Modeling of the Left Ventricle Mitral Valve Complex in Ischemic Mitral Regurgitation. Medical Image Analysis, 2022, 80, 102513.	11.6	1
261	Cellular myoplasty: what are we really trying to achieve?. Annals of Thoracic Surgery, 2002, 73, 342-343.	1.3	Ο
262	Increased border-Zone stress in bulging ventricular aneurysm. Annals of Thoracic Surgery, 2004, 77, 1876.	1.3	0
263	Pathophysiology and Percutaneous Coronary Sinus Repair of Mitral Regurgitation. , 2005, , 49-68.		Ο
264	Management of mitral regurgitation in the elderly patient. Aging Health, 2007, 3, 637-646.	0.3	0
265	Fluorescence spectroscopy to assess apoptosis in myocardium. , 2007, , .		Ο
266	Closed-Loop Lumped Parameter Cardiovascular Model of Infarct Border Zone Pacing. , 2010, , .		0
267	Augmentation du stress pariétal dans les anévrysmes sacciformes versus fusiformes de l'aorte thoracique descendante. Annales De Chirurgie Vasculaire, 2011, 25, 1203-1211.	0.0	Ο
268	Fully automatic segmentation of the open mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas label fusion and deformable medial modeling. , 2012, , .		0
269	Dynamic shape modeling of the mitral valve from real-time 3D ultrasound images using continuous medial representation. , 2012, , .		0
270	Invited Commentary. Annals of Thoracic Surgery, 2014, 97, 1503-1504.	1.3	0

#	Article	IF	CITATIONS
271	Invited Commentary. Annals of Thoracic Surgery, 2015, 99, 559-560.	1.3	0
272	Reply. Annals of Thoracic Surgery, 2016, 102, 1414-1415.	1.3	0
273	Reply. Annals of Thoracic Surgery, 2018, 106, 313.	1.3	0
274	Towards Patient-Specific Mitral Valve Surgical Simulations. , 2018, , 471-487.		0
275	Quantitative threeâ€dimensional echocardiographic analysis of the bicuspid aortic valve and aortic root: A single modality approach. Journal of Cardiac Surgery, 2020, 35, 375-382.	0.7	0
276	Multimodal image analysis and subvalvular dynamics in ischemic mitral regurgitation. JTCVS Open, 2021, 5, 48-60.	0.5	0
277	Left atrial geometry in an ovine ischemic mitral regurgitation model: implications for transcatheter mitral valve replacement devices with a left atrial anchoring mechanism. Journal of Cardiothoracic Surgery, 2021, 16, 295.	1.1	0
278	In Vivo Dynamic Strains of the Mitral Valve Annulus. , 2007, , .		0
279	A Novel Approach to Quantify Alterations in Ventricular Principal Strain Vectors Secondary to Ischemic Injury. , 2010, , .		0
280	Minimally Invasive Delivery of a Novel Direct Epicardial Assist Device in a Porcine Heart Failure Model. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2014, 9, 16-21.	0.9	0
281	Diffeomorphic Medial Modeling. Lecture Notes in Computer Science, 2019, 11492, 208-220.	1.3	0
282	Quantification of Papillary Muscle Motion and Mitral Regurgitation After Myocardial Infarction. Conference Proceedings of the Society for Experimental Mechanics, 2020, , 19-24.	0.5	0
283	Author response: new therapies for reducing post-myocardial left ventricular remodeling. Annals of Translational Medicine, 2015, 3, 146.	1.7	0
284	Estimation of elastic and viscous properties of the left ventricle based on annulus plane harmonic behavior. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0

17