
## Ashu Jain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12058933/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Incorporating non-uniformity and non-linearity of hydrologic and catchment characteristics in<br>rainfall–runoff modeling using conceptual, data-driven, and hybrid techniques. Journal of<br>Hydroinformatics, 2022, 24, 350-366.              | 1.1 | 5         |
| 2  | Development of a Physics-Guided Neural Network Model for Effective Urban Flood Management.<br>Journal of Hydrologic Engineering - ASCE, 2022, 27, .                                                                                             | 0.8 | 2         |
| 3  | Modeling rainfall-runoff process using artificial neural network with emphasis on parameter sensitivity. Modeling Earth Systems and Environment, 2020, 6, 2177-2188.                                                                            | 1.9 | 23        |
| 4  | Knowledge extraction from trained ANN drought classification model. Journal of Hydrology, 2020,<br>585, 124804.                                                                                                                                 | 2.3 | 24        |
| 5  | Evaporation modelling using neural networks for assessing the selfâ€sustainability of a water body.<br>Lakes and Reservoirs: Research and Management, 2017, 22, 123-133.                                                                        | 0.6 | 7         |
| 6  | Optimal groundwater management using state-space surrogate models: a case study for an arid coastal region. Journal of Hydroinformatics, 2016, 18, 666-686.                                                                                     | 1.1 | 12        |
| 7  | Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environmental Modelling and Software, 2010, 25, 891-909.                             | 1.9 | 690       |
| 8  | River Flow Prediction Using an Integrated Approach. Journal of Hydrologic Engineering - ASCE, 2009,<br>14, 75-83.                                                                                                                               | 0.8 | 35        |
| 9  | RECENT ADVANCES IN KNOWLEDGE EXTRACTION FROM NEURAL NETWORK BASED HYDROLOGIC MODELS.<br>ISH Journal of Hydraulic Engineering, 2009, 15, 75-83.                                                                                                  | 1.1 | 5         |
| 10 | RAINFALL RUNOFF MODELLING USING NEURAL NETWORKS: STATE-OF-THE-ART AND FUTURE RESEARCH<br>NEEDS. ISH Journal of Hydraulic Engineering, 2009, 15, 52-74.                                                                                          | 1.1 | 7         |
| 11 | Dissection of trained neural network hydrologic models for knowledge extraction. Water Resources<br>Research, 2009, 45, .                                                                                                                       | 1.7 | 32        |
| 12 | Modeling and Analysis of Concrete Slump Using Artificial Neural Networks. Journal of Materials in<br>Civil Engineering, 2008, 20, 628-633.                                                                                                      | 1.3 | 29        |
| 13 | Artificial neuron models for hydrological modeling. Neural Networks (IJCNN), International Joint<br>Conference on, 2007, , .                                                                                                                    | 0.0 | 1         |
| 14 | Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing<br>Journal, 2007, 7, 585-592.                                                                                                                       | 4.1 | 390       |
| 15 | Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. Journal of Hydrology, 2006, 317, 291-306.                                                                                    | 2.3 | 115       |
| 16 | Comment on "Integration of artificial neural networks with conceptual models in rainfall-runoff<br>modeling―by Jieyun Chen and Barry J. Adams, 2005. J. Hydrol. doi:10.1016/j.jhydrol.2005.06.017. Journal of<br>Hydrology, 2006, 329, 274-276. | 2.3 | 2         |
| 17 | An evaluation of artificial neural network technique for the determination of infiltration model parameters. Applied Soft Computing Journal, 2006, 6, 272-282.                                                                                  | 4.1 | 57        |
| 18 | A comparative analysis of training methods for artificial neural network rainfall–runoff models.<br>Applied Soft Computing Journal, 2006, 6, 295-306.                                                                                           | 4.1 | 259       |

Ashu Jain

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Discussion of "Application of Neural Networks for Estimation of Concrete Strength―by Jong-In Kim,<br>Doo Kie Kim, Maria Q. Feng, and Frank Yazdani. Journal of Materials in Civil Engineering, 2005, 17,<br>736-738.                                         | 1.3 | 3         |
| 20 | Determination of an optimal unit pulse response function using real-coded genetic algorithm. Journal of Hydrology, 2005, 303, 199-214.                                                                                                                       | 2.3 | 19        |
| 21 | Comment on â€~Comparison of static-feedforward and dynamic-feedback neural networks for<br>rainfall-runoff modeling' by Y.M. Chiang, L.C. Chang, and F.J. Chang, 2004. Journal of Hydrology 290<br>(3–4), 297–311. Journal of Hydrology, 2005, 314, 207-211. | 2.3 | 1         |
| 22 | Identification of Unknown Groundwater Pollution Sources Using Artificial Neural Networks.<br>Journal of Water Resources Planning and Management - ASCE, 2004, 130, 506-514.                                                                                  | 1.3 | 137       |
| 23 | Discussion of "Performance of Neural Networks in Daily Streamflow Forecasting―by S. Birikundavyi,<br>R. Labib, H. T. Trung, and J. Rousselle. Journal of Hydrologic Engineering - ASCE, 2004, 9, 553-555.                                                    | 0.8 | 1         |
| 24 | AN EVALUATION OF THE AVAILABLE TECHNIQUES FOR ESTIMATING MISSING FECAL COLIFORM DATA. Journal of the American Water Resources Association, 2004, 40, 1617-1630.                                                                                              | 1.0 | 6         |
| 25 | Identification of physical processes inherent in artificial neural network rainfall runoff models.<br>Hydrological Processes, 2004, 18, 571-581.                                                                                                             | 1.1 | 170       |
| 26 | Explaining the internal behaviour of artificial neural network river flow models. Hydrological<br>Processes, 2004, 18, 833-844.                                                                                                                              | 1.1 | 109       |
| 27 | Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resources Research, 2004, 40, .                                              | 1.7 | 191       |
| 28 | Optimal Design of Composite Channels Using Genetic Algorithm. Journal of Irrigation and Drainage<br>Engineering - ASCE, 2004, 130, 286-295.                                                                                                                  | 0.6 | 71        |
| 29 | Closure to "Comparative Analysis of Event-based Rainfall-runoff Modeling Techniques—Deterministic,<br>Statistical, and Artificial Neural Networks―by Ashu Jain and S. K. V. Prasad Indurthy. Journal of<br>Hydrologic Engineering - ASCE, 2004, 9, 551-553.  | 0.8 | 8         |
| 30 | Comparative Analysis of Event-based Rainfall-runoff Modeling Techniques—Deterministic, Statistical,<br>and Artificial Neural Networks. Journal of Hydrologic Engineering - ASCE, 2003, 8, 93-98.                                                             | 0.8 | 116       |
| 31 | Shortâ€ŧerm water demand forecast modeling techniques—CONVENTIONAL METHODS VERSUS AI. Journal<br>- American Water Works Association, 2002, 94, 64-72.                                                                                                        | 0.2 | 117       |
| 32 | Short-Term Water Demand Forecast Modelling at IIT Kanpur Using Artificial Neural Networks. Water<br>Resources Management, 2001, 15, 299-321.                                                                                                                 | 1.9 | 220       |
| 33 | A DECISION SUPPORT SYSTEM FOR DROUGHT CHARACTERIZATION AND MANAGEMENT. Civil Engineering and Environmental Systems, 2001, 18, 105-140.                                                                                                                       | 0.4 | 8         |