
Angelo Reggiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12058855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature, 1994, 372, 237-243.	27.8	755
2	The antinociceptive and anxiolytic-like effects of the metabotropic glutamate receptor 5 (mGluR5) antagonists, MPEP and MTEP, and the mGluR1 antagonist, LY456236, in rodents: a comparison of efficacy and side-effect profiles. Psychopharmacology, 2005, 179, 207-217.	3.1	150
3	A catalytically silent FAAH-1 variant drives anandamide transport in neurons. Nature Neuroscience, 2012, 15, 64-69.	14.8	150
4	Combining Galantamine and Memantine in Multitargeted, New Chemical Entities Potentially Useful in Alzheimer's Disease. Journal of Medicinal Chemistry, 2012, 55, 9708-9721.	6.4	129
5	Antinociceptive effects of the N-acylethanolamine acid amidase inhibitor ARN077 in rodent pain models. Pain, 2013, 154, 350-360.	4.2	98
6	Effect of NMDA- and strychnine-insensitive glycine site antagonists on NMDA-mediated convulsions and learning. Psychopharmacology, 1990, 102, 551-552.	3.1	90
7	A Glycosylated, Labionin-Containing Lanthipeptide with Marked Antinociceptive Activity. ACS Chemical Biology, 2014, 9, 398-404.	3.4	89
8	Activation of metabotropic receptors has a neuroprotective effect in a rodent model of focal ischaemia. European Journal of Pharmacology, 1992, 216, 335-336.	3.5	85
9	Substituted Indole-2-carboxylates asin VivoPotent Antagonists Acting as the Strychnine-Insensitive Glycine Binding Site. Journal of Medicinal Chemistry, 1997, 40, 841-850.	6.4	81
10	Peripheral FAAH inhibition causes profound antinociception and protects against indomethacin-induced gastric lesions. Pharmacological Research, 2012, 65, 553-563.	7.1	81
11	The Glycine Antagonist GV150526 Protects Somatosensory Evoked Potentials and Reduces the Infarct Area in the MCAo Model of Focal Ischemia in the Rat. Experimental Neurology, 1997, 145, 425-433.	4.1	77
12	Genotype-dependent sensitivity to morphine: role of different opiate receptor populations. Brain Research, 1980, 189, 289-294.	2.2	74
13	A Potent Systemically Active <i>N</i> -Acylethanolamine Acid Amidase Inhibitor that Suppresses Inflammation and Human Macrophage Activation. ACS Chemical Biology, 2015, 10, 1838-1846.	3.4	71
14	Galantamine potentiates the neuroprotective effect of memantine against <scp>NMDA</scp> â€induced excitotoxicity. Brain and Behavior, 2013, 3, 67-74.	2.2	52
15	Effects of the metabotropic glutamate receptor antagonist MCPG on spatial and context-specific learning. Neuropharmacology, 1996, 35, 1557-1565.	4.1	50
16	Synthesis and pharmacological characterisation of 2,4-Dicarboxy-pyrroles as selective non-Competitive mGluR1 antagonists. Bioorganic and Medicinal Chemistry, 2003, 11, 171-183.	3.0	48
17	Synthesis and Structure–Activity Relationship (SAR) of 2-Methyl-4-oxo-3-oxetanylcarbamic Acid Esters, a Class of Potent <i>N</i> -Acylethanolamine Acid Amidase (NAAA) Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 6917-6934.	6.4	43
18	The microvascular system in ischemic cortical lesions. Acta Neuropathologica, 1996, 92, 56-63.	7.7	42

Angelo Reggiani

#	Article	IF	CITATIONS
19	Qualitative and quantitative analysis of the progressive cerebral damage after middle cerebral artery occlusion in mice. Brain Research, 1993, 606, 251-258.	2.2	38
20	β-Lactones Inhibit <i>N</i> -acylethanolamine Acid Amidase by S-Acylation of the Catalytic N-Terminal Cysteine. ACS Medicinal Chemistry Letters, 2012, 3, 422-426.	2.8	36
21	Regulation of synaptic plasticity by mGluR1 studied in vivo in mGluR1 mutant mice. Brain Research, 1997, 761, 121-126.	2.2	33
22	Substituted Analogues of GV150526 as Potent Glycine Binding Site Antagonists in Animal Models of Cerebral Ischemia. Journal of Medicinal Chemistry, 1999, 42, 3486-3493.	6.4	33
23	Discovery of Orally Efficacious Tetracyclic Metabotropic Glutamate Receptor 1 (mGluR1) Antagonists for the Treatment of Chronic Pain. Journal of Medicinal Chemistry, 2007, 50, 5550-5553.	6.4	33
24	FAAH inhibition as a preventive treatment for migraine: A pre-clinical study. Neurobiology of Disease, 2020, 134, 104624.	4.4	33
25	Ethanol-induced changes of dopaminergic function in three strains of mice characterized by a different population of opiate receptors. Psychopharmacology, 1981, 74, 260-262.	3.1	32
26	Gene expression profiling of melanocortin system in neuropathic rats supports a role in nociception. Molecular Brain Research, 2003, 118, 111-118.	2.3	32
27	Hit Optimization of 5-Substituted- <i>N</i> -(piperidin-4-ylmethyl)-1 <i>H</i> -indazole-3-carboxamides: Potent Glycogen Synthase Kinase-3 (GSK-3) Inhibitors with in Vivo Activity in Model of Mood Disorders. Journal of Medicinal Chemistry, 2015, 58, 8920-8937.	6.4	30
28	Endogenous and exogenous melanocortin antagonists induce anti-allodynic effects in a model of rat neuropathic pain. Behavioural Brain Research, 2005, 157, 55-62.	2.2	29
29	Characterization of the peripheral FAAH inhibitor, URB937, in animal models of acute and chronic migraine. Neurobiology of Disease, 2021, 147, 105157.	4.4	29
30	Enantiomerically pure tetrahydroquinoline derivatives as in vivo potent antagonists of the glycine binding site associated to the NMDA receptor. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3863-3866.	2.2	26
31	Tricyclic thienopyridine–pyrimidones/thienopyrimidine–pyrimidones as orally efficacious mGluR1 antagonists for neuropathic pain. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3199-3203.	2.2	26
32	Potent α-amino-β-lactam carbamic acid ester as NAAA inhibitors. Synthesis and structure–activity relationship (SAR) studies. European Journal of Medicinal Chemistry, 2016, 111, 138-159.	5.5	26
33	Involvement of cholecystokinin within craving for cocaine: role of cholecystokinin receptor ligands. Expert Opinion on Investigational Drugs, 2000, 9, 2249-2258.	4.1	23
34	(E)-3-(2-(N-Phenylcarbamoyl)vinyl)pyrrole-2-carboxylic Acid Derivatives. A Novel Class of Glycine Site Antagonists. Journal of Medicinal Chemistry, 1998, 41, 808-820.	6.4	22
35	Melanocortin receptor agonists and antagonists modulate nociceptive sensitivity in the mouse formalin test. European Journal of Pharmacology, 2003, 482, 127-132.	3.5	21
36	Fused tricyclic mGluR1 antagonists for the treatment of neuropathic pain. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1575-1578.	2.2	20

Angelo Reggiani

#	Article	IF	CITATIONS
37	The neuroprotective activity of the glycine receptor antagonist GV150526: an in vivo study by magnetic resonance imaging. European Journal of Pharmacology, 2001, 419, 147-153.	3.5	19
38	A-ring modifications on the triazafluorenone core structure and their mGluR1 antagonist properties. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2474-2477.	2.2	17
39	Synthesis and biological evaluation of pyrido[2,3-b]pyrazine and pyrido[2,3-b]pyrazine-n-oxide as selective glycine antagonists. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2749-2754.	2.2	16
40	Glycine-site antagonists and stroke. Expert Opinion on Investigational Drugs, 1999, 8, 1837-1848.	4.1	15
41	The neuroprotective glycine receptor antagonist GV150526 does not produce neuronal vacuolization or cognitive deficits in rats. European Journal of Pharmacology, 1999, 378, 153-160.	3.5	15
42	Regional Cerebral Blood Volume Mapping after Ischemic Lesions. NeuroImage, 2000, 12, 418-424.	4.2	14
43	Cycloalkyl Indole-2-Carboxylates as Useful Tools for Mapping the "North-Eastern" Region of the Glycine Binding Site Associated with the NMDA Receptor. Archiv Der Pharmazie, 1999, 332, 73-80.	4.1	11
44	Ecdysone-Based System for Controlled Inducible Expression of Metabotropic Glutamate Receptor Subtypes 2, 5, and 8. Journal of Biomolecular Screening, 2005, 10, 841-848.	2.6	10
45	2,3-Dihydro-6,7-dichloro-pyrido[2,3-b]pyrazine-8-oxide as selective glycine antagonist with in vivo activity. Bioorganic and Medicinal Chemistry, 1997, 5, 2129-2132.	3.0	9
46	Regional changes in the contralateral ?healthy? hemisphere after ischemic lesions evaluated by quantitative T2 parametric maps. The Anatomical Record, 2002, 266, 118-122.	1.8	9
47	The mood stabilizing properties of AF3581, a novel potent GSK-3Î ² inhibitor. Biomedicine and Pharmacotherapy, 2020, 128, 110249.	5.6	9
48	Optimization of Indazole-Based GSK-3 Inhibitors with Mitigated hERG Issue and In Vivo Activity in a Mood Disorder Model. ACS Medicinal Chemistry Letters, 2020, 11, 825-831.	2.8	9
49	Spinal nociceptive sensitization and plasma palmitoylethanolamide levels during experimentally induced migraine attacks. Pain, 2021, 162, 2376-2385.	4.2	8
50	Identification of single nucleotide polymorphisms of the human metabotropic glutamate receptor 1 gene and pharmacological characterization of a P993S variant. Biochemical Pharmacology, 2009, 77, 1246-1253.	4.4	7
51	Synthesis and SAR development of novel mGluR1 antagonists for the treatment of chronic pain. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7223-7226.	2.2	7
52	Inhibition of N-acylethanolamine-hydrolyzing acid amidase reduces TÂcell infiltration in a mouse model of multiple sclerosis. Pharmacological Research, 2021, 172, 105816.	7.1	7
53	Understanding the Mechanism of Action of NAI-112, a Lanthipeptide with Potent Antinociceptive Activity. Molecules, 2021, 26, 6764.	3.8	7
54	Discovery and SAR Evolution of Pyrazole Azabicyclo[3.2.1]octane Sulfonamides as a Novel Class of Non-Covalent N-Acylethanolamine-Hydrolyzing Acid Amidase (NAAA) Inhibitors for Oral Administration. Journal of Medicinal Chemistry, 2021, 64, 13327-13355.	6.4	6

#	Article	IF	CITATIONS
55	Potentiation of endocannabinoids and other lipid amides prevents hyperalgesia and inflammation in a pre-clinical model of migraine. Journal of Headache and Pain, 2022, 23, .	6.0	3
56	GV150526: A Neuroprotective Agent. CNS Neuroscience & Therapeutics, 2000, 6, 135-152.	4.0	2
57	Novel glycine antagonists as potent neuroprotective agents. Pharmacochemistry Library, 1997, , 81-95.	0.1	1