
Rick G Schnellmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1205573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repeated Administration of 2-Hydroxypropyl-β-Cyclodextrin (HPβCD) Attenuates the Chronic Inflammatory Response to Experimental Stroke. Journal of Neuroscience, 2022, 42, 325-348.	3.6	14
2	Design, Development, Physicochemical Characterization, and In Vitro Drug Release of Formoterol PEGylated PLGA Polymeric Nanoparticles. Pharmaceutics, 2022, 14, 638.	4.5	6
3	Post-Stroke Administration of the p75 Neurotrophin Receptor Modulator, LM11A-31, Attenuates Chronic Changes in Brain Metabolism, Increases Neurotransmitter Levels, and Improves Recovery. Journal of Pharmacology and Experimental Therapeutics, 2022, 380, 126-141.	2.5	6
4	Mitochondrial Fission and Fusion Dynamics are Regulated by Multiple Pathways in Renal Proximal Tubule Cells Treated with High Glucose. FASEB Journal, 2022, 36, .	0.5	0
5	Mitochondrial biogenesis for the treatment of spinal cord injury. , 2022, , 359-372.		1
6	Kidney targeting of formoterol containing polymeric nanoparticles improves recovery from ischemia reperfusion-induced acute kidney injury in mice. Kidney International, 2022, 102, 1073-1089.	5.2	8
7	Increased Renal Expression of Complement Components in Patients With Liver Diseases: Nonalcoholic Steatohepatitis, Alcohol-Associated, Viral Hepatitis, and Alcohol-Viral Combination. Toxicological Sciences, 2022, 189, 62-72.	3.1	5
8	Time-to-treatment window and cross-sex potential of β2-adrenergic receptor-induced mitochondrial biogenesis-mediated recovery after spinal cord injury. Toxicology and Applied Pharmacology, 2021, 411, 115366.	2.8	13
9	Formoterol PLGA-PEG Nanoparticles Induce Mitochondrial Biogenesis in Renal Proximal Tubules. AAPS Journal, 2021, 23, 88.	4.4	13
10	FDA-approved 5-HT1F receptor agonist lasmiditan induces mitochondrial biogenesis and enhances locomotor and blood-spinal cord barrier recovery after spinal cord injury. Experimental Neurology, 2021, 341, 113720.	4.1	14
11	Newly Identified Chemicals Preserve Mitochondrial Capacity and Decelerate Loss of Photoreceptor Cells in Murine Retinal Degeneration Models. Journal of Ocular Pharmacology and Therapeutics, 2021, 37, 367-378.	1.4	3
12	Measurement of Cell Death in Mammalian Cells. Current Protocols, 2021, 1, e210.	2.9	14
13	Metformin: Experimental and Clinical Evidence for a Potential Role in Emphysema Treatment. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 651-666.	5.6	49
14	Extracellular signal-regulated kinase 1/2 regulates NAD metabolism during acute kidney injury through microRNA-34a-mediated NAMPT expression. Cellular and Molecular Life Sciences, 2020, 77, 3643-3655.	5.4	20
15	Elucidation of cGMP-dependent induction of mitochondrial biogenesis through PKG and p38 MAPK in the kidney. American Journal of Physiology - Renal Physiology, 2020, 318, F322-F328.	2.7	16
16	Regulation of mitochondrial dynamics and energetics in the diabetic renal proximal tubule by the β ₂ -adrenergic receptor agonist formoterol. American Journal of Physiology - Renal Physiology, 2020, 319, F773-F779.	2.7	21
17	Using the exposome to address gene–environment interactions in kidney disease. Nature Reviews Nephrology, 2020, 16, 621-622.	9.6	7
18	5-hydroxytryptamine 1F Receptor Agonist Induces Mitochondrial Biogenesis and Promotes Recovery from Spinal Cord Injury. Journal of Pharmacology and Experimental Therapeutics, 2020, 372, 216-223.	2.5	20

#	Article	IF	CITATIONS
19	Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Experimental Neurology, 2020, 329, 113309.	4.1	55
20	Formoterol, a β2-adrenoreceptor agonist, induces mitochondrial biogenesis and promotes cognitive recovery after traumatic brain injury. Neurobiology of Disease, 2020, 140, 104866.	4.4	16
21	PDE5 inhibition rescues mitochondrial dysfunction and angiogenic responses induced by Akt3 inhibition by promotion of PRC expression. Journal of Biological Chemistry, 2020, 295, 18091-18104.	3.4	6
22	β2-adrenergic receptor-mediated mitochondrial biogenesis improves skeletal muscle recovery following spinal cord injury. Experimental Neurology, 2019, 322, 113064.	4.1	24
23	The 5-hydroxytryptamine receptor 1F stimulates mitochondrial biogenesis and angiogenesis in endothelial cells. Biochemical Pharmacology, 2019, 169, 113644.	4.4	22
24	Proximal Tubule <i>β</i> ₂ -Adrenergic Receptor Mediates Formoterol-Induced Recovery of Mitochondrial and Renal Function after Ischemia-Reperfusion Injury. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 173-180.	2.5	26
25	Mitochondrial biogenesis induced by the β2-adrenergic receptor agonist formoterol accelerates podocyte recovery from glomerular injury. Kidney International, 2019, 96, 656-673.	5.2	44
26	Pharmacological Stimulation of Mitochondrial Biogenesis Using the Food and Drug Administration-Approved β ₂ -Adrenoreceptor Agonist Formoterol for the Treatment of Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 962-972.	3.4	41
27	The β 2 â€Adrenergic Receptor Agonist Formoterol Decreases Fibrotic And Mitochondrial Fusion/Fission Proteins in a Mouse Model of Diabetic Nephropathy. FASEB Journal, 2019, 33, 514.14.	0.5	1
28	Identification of dual mechanisms mediating 5-hydroxytryptamine receptor 1F-induced mitochondrial biogenesis. American Journal of Physiology - Renal Physiology, 2018, 314, F260-F268.	2.7	19
29	5â€HT _{1F} receptorâ€mediated mitochondrial biogenesis for the treatment of Parkinson's disease. British Journal of Pharmacology, 2018, 175, 348-358.	5.4	31
30	5-HT1F receptor regulates mitochondrial homeostasis and its loss potentiates acute kidney injury and impairs renal recovery. American Journal of Physiology - Renal Physiology, 2018, 315, F1119-F1128.	2.7	28
31	ERK1/2 Regulates NAD ⁺ Metabolism During Acute Kidney Injury Through microRNAâ€34aâ€Mediated NAMPT Expression. FASEB Journal, 2018, 32, .	0.5	1
32	Schematic diagram of the neural protective role of IMMH004 after TGCI/R Pharmacological Induction of Mitochondrial Biogenesis using the β 2 â€Adrenoreceptor Agonist Formoterol for the Treatment of Spinal Cord Injury. FASEB Journal, 2018, 32, 824.8.	0.5	0
33	Striatal Mitochondrial Disruption following Severe Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 487-494.	3.4	23
34	Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. Journal of Lipid Research, 2017, 58, 1439-1452.	4.2	35
35	Structural and pharmacological basis for the induction of mitochondrial biogenesis by formoterol but not clenbuterol. Scientific Reports, 2017, 7, 10578.	3.3	26
36	Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 303-313.	2.5	83

RICK G SCHNELLMANN

#	Article	IF	CITATIONS
37	Mitochondrial energetics in the kidney. Nature Reviews Nephrology, 2017, 13, 629-646.	9.6	758
38	Extracellular Signal–Regulated Kinase 1/2 Regulates Mouse Kidney Injury Molecule-1 Expression Physiologically and Following Ischemic and Septic Renal Injury. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 419-427.	2.5	31
39	Rapid Renal Regulation of Peroxisome Proliferator-activated Receptor γ Coactivator-1α by Extracellular Signal-Regulated Kinase 1/2 in Physiological and Pathological Conditions. Journal of Biological Chemistry, 2016, 291, 26850-26859.	3.4	30
40	Disrupted mitochondrial genes and inflammation following stroke. Life Sciences, 2016, 166, 139-148.	4.3	14
41	Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases. Journal of Medicinal Chemistry, 2016, 59, 10411-10434.	6.4	49
42	Resistin Resets Neutrophil Function in Kidney Diseases*. Critical Care Medicine, 2016, 44, 1454-1455.	0.9	0
43	Delayed Mitogen-Activated Protein Kinase/Extracellular Signal–Regulated Kinase Inhibition by Trametinib Attenuates Systemic Inflammatory Responses and Multiple Organ Injury in Murine Sepsis*. Critical Care Medicine, 2016, 44, e711-e720.	0.9	37
44	5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 1-9.	2.5	22
45	Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases. Annual Review of Pharmacology and Toxicology, 2016, 56, 229-249.	9.4	140
46	NKT cell modulates NAFLD potentiation of metabolic oxidative stress-induced mesangial cell activation and proximal tubular toxicity. American Journal of Physiology - Renal Physiology, 2016, 310, F85-F101.	2.7	17
47	Ethanol and High Cholesterol Diet Causes Severe Steatohepatitis and Early Liver Fibrosis in Mice. PLoS ONE, 2016, 11, e0163342.	2.5	16
48	Disrupted Renal Mitochondrial Homeostasis after Liver Transplantation in Rats. PLoS ONE, 2015, 10, e0140906.	2.5	3
49	Assessment of ToxCast Phase II for Mitochondrial Liabilities Using a High-Throughput Respirometric Assay. Toxicological Sciences, 2015, 146, 226-234.	3.1	30
50	Suppression of Mitochondrial Biogenesis through Toll-Like Receptor 4–Dependent Mitogen-Activated Protein Kinase Kinase/Extracellular Signal-Regulated Kinase Signaling in Endotoxin-Induced Acute Kidney Injury. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 346-357.	2.5	63
51	Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells. American Journal of Physiology - Renal Physiology, 2015, 309, F204-F215.	2.7	48
52	Improvement of liver injury and survival by JNK2 and iNOS deficiency in liver transplants from cardiac death mice. Journal of Hepatology, 2015, 63, 68-74.	3.7	14
53	Urinary ATP Synthase Subunit β Is a Novel Biomarker of Renal Mitochondrial Dysfunction in Acute Kidney Injury. Toxicological Sciences, 2015, 145, 108-117.	3.1	13
54	Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury. Kidney International, 2015, 88, 1336-1344.	5.2	84

#	Article	IF	CITATIONS
55	Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 348-360.	4.1	120
56	Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury. American Journal of Physiology - Renal Physiology, 2014, 307, F435-F444.	2.7	59
57	Agonism of the 5-Hydroxytryptamine 1F Receptor Promotes Mitochondrial Biogenesis and Recovery from Acute Kidney Injury. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 257-264.	2.5	61
58	Intereukin-10 and Kupffer cells protect steatotic mice livers from ischemia-reperfusion injury. European Cytokine Network, 2014, 25, 69-76.	2.0	27
59	Atomoxetine Prevents Dexamethasone-Induced Skeletal Muscle Atrophy in Mice. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 663-673.	2.5	34
60	Formoterol Restores Mitochondrial and Renal Function after Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 1157-1162.	6.1	111
61	Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis. Toxicology Letters, 2014, 224, 326-332.	0.8	107
62	Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury. Toxicology and Applied Pharmacology, 2013, 273, 345-354.	2.8	142
63	β2-Adrenoceptor agonists in the regulation of mitochondrial biogenesis. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5376-5381.	2.2	21
64	Mitochondrial Homeostasis in Acute Organ Failure. Current Pathobiology Reports, 2013, 1, 169-177.	3.4	65
65	cGMP-Selective Phosphodiesterase Inhibitors Stimulate Mitochondrial Biogenesis and Promote Recovery from Acute Kidney Injury. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 626-634.	2.5	79
66	Persistent disruption of mitochondrial homeostasis after acute kidney injury. American Journal of Physiology - Renal Physiology, 2012, 302, F853-F864.	2.7	198
67	The β ₂ -Adrenoceptor Agonist Formoterol Stimulates Mitochondrial Biogenesis. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 106-118.	2.5	82
68	Supplementation of amphiregulin improves fatty liver regeneration after partial hepatectomy (PHX): the role of câ€Jun Nâ€ŧerminal kinase (JNK) and extracellular signalâ€regulated kinases (ERK). FASEB Journal, 2011, 25, 998.10.	0.5	0
69	A high-throughput respirometric assay for mitochondrial biogenesis and toxicity. Analytical Biochemistry, 2010, 404, 75-81.	2.4	119
70	SRT1720 Induces Mitochondrial Biogenesis and Rescues Mitochondrial Function after Oxidant Injury in Renal Proximal Tubule Cells. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 593-601.	2.5	140
71	5-Hydroxytryptamine Receptor Stimulation of Mitochondrial Biogenesis. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 632-639.	2.5	63
72	Toll-like receptor 4 is a key mediator of murine steatotic liver warm ischemia/reperfusion injury. Liver Transplantation. 2009. 15. 1101-1109.	2.4	52

RICK G SCHNELLMANN

#	Article	IF	CITATIONS
73	Calpain10: A new marker of kidney aging and dysfunction. FASEB Journal, 2009, 23, 604.11.	0.5	Ο
74	Isoflavones Promote Mitochondrial Biogenesis. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 536-543.	2.5	180
75	Extracellular Signal-Regulated Kinase Activation Mediates Mitochondrial Dysfunction and Necrosis Induced by Hydrogen Peroxide in Renal Proximal Tubular Cells. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 732-740.	2.5	48
76	The Mitochondrial Biogenesis Regulator PGCâ€lalpha is Degraded by the Proteasome and Calpain Pathways in Renal Cells. FASEB Journal, 2008, 22, 605.10.	0.5	0
77	PGC-1 $\hat{l}\pm$ over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochemical and Biophysical Research Communications, 2007, 355, 734-739.	2.1	109
78	Divergent Roles for iPLA ₂ γ in Mitochondrial Dysfunction. FASEB Journal, 2006, 20, A922.	0.5	0
79	Identification of the Î ³ -Aminobutyric Acid Receptor β2 and β3 Subunits in Rat, Rabbit, and Human Kidneys. Journal of the American Society of Nephrology: JASN, 2001, 12, 1107-1113.	6.1	12
80	Proteases in renal cell death: Calpains mediate cell death produced by diverse toxicants. Renal Failure, 1998, 20, 679-686.	2.1	36
81	Analgesic nephropathy in rodents. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 1998, 1, 81-90.	6.5	12
82	Transforming growth factor-β1 inhibits regeneration of renal proximal tubular cells after oxidant exposure. Journal of Biochemical Toxicology, 1996, 11, 79-84.	0.4	5
83	PROTEINASES IN RENAL CELL DEATH. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1996, 48, 319-332.	2.3	14
84	Arachidonic acid release in renal proximal tubule cell injuries and death. Journal of Biochemical Toxicology, 1994, 9, 211-217.	0.4	26
85	Pentachlorobutadienyl-l-cysteine (PCBC) toxicity: The importance of mitochondrial dysfunction. Journal of Biochemical Toxicology, 1991, 6, 253-260.	0.4	13
86	The effects of haloalkene cysteine conjugates on cytosolic free calcium levels in suspensions of rat renal proximal tubules. Journal of Biochemical Toxicology, 1990, 5, 187-192.	0.4	10
87	The in vitro metabolism and bioactivation of 1,2-dibromoethane (ethylene dibromide) by human liver. Journal of Biochemical Toxicology, 1986, 1, 1-11.	0.4	20