Michael A Schumacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12054824/publications.pdf Version: 2024-02-01

		687363	996975
20	1,043	13	15
papers	citations	h-index	g-index
21	21	21	1004
21	21	21	1624
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sprouty2 limits intestinal tuft and goblet cell numbers through GSK3β-mediated restriction of epithelial IL-33. Nature Communications, 2021, 12, 836.	12.8	30
2	NRG4-ErbB4 signaling represses proinflammatory macrophage activity. American Journal of Physiology - Renal Physiology, 2021, 320, G990-G1001.	3.4	11
3	Neuregulinâ€4 Limits Proâ€Inflammatory Cytokine Production in Macrophages. FASEB Journal, 2020, 34, 1-1.	0.5	Ο
4	The Loss of Endogenous Neuregulinâ€4 Increases Intestinal Epithelial Permeability and Apoptosis. FASEB Journal, 2019, 33, 869.24.	0.5	0
5	Growth Factors in the Intestinal Tract. , 2018, , 71-101.		6
6	Loss of Sprouty2 enhances ILâ€33 expression and protects against experimental colitis FASEB Journal, 2018, 32, 873.14.	0.5	0
7	ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death and Disease, 2017, 8, e2622-e2622.	6.3	91
8	The ErbB3 receptor tyrosine kinase negatively regulates Paneth cells by PI3K-dependent suppression of Atoh1. Cell Death and Differentiation, 2017, 24, 855-865.	11.2	31
9	Co-culture of Gastric Organoids and Immortalized Stomach Mesenchymal Cells. Methods in Molecular Biology, 2016, 1422, 23-31.	0.9	7
10	Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid. Scientific Reports, 2015, 5, 17185.	3.3	54
11	The use of murineâ€derived fundic organoids in studies of gastric physiology. Journal of Physiology, 2015, 593, 1809-1827.	2.9	98
12	<i><scp>H</scp>elicobacter pylori</i> â€induced Sonic Hedgehog Expression is Regulated by <scp>NF</scp> îºB Pathway Activation: The Use of a Novel InÂvitro Model to Study Epithelial Response to Infection. Helicobacter, 2015, 20, 19-28.	3.5	56
13	CD44 Plays a Functional Role in Helicobacter pylori-induced Epithelial Cell Proliferation. PLoS Pathogens, 2015, 11, e1004663.	4.7	138
14	Motility and Chemotaxis Mediate the Preferential Colonization of Gastric Injury Sites by Helicobacter pylori. PLoS Pathogens, 2014, 10, e1004275.	4.7	67
15	Gastritis Promotes an Activated Bone Marrow-Derived Mesenchymal Stem Cell with a Phenotype Reminiscent of a Cancer-Promoting Cell. Digestive Diseases and Sciences, 2014, 59, 569-582.	2.3	18
16	Crosstalks between Cytokines and Sonic Hedgehog in Helicobacter pylori Infection: A Mathematical Model. PLoS ONE, 2014, 9, e111338.	2.5	13
17	Establishment of Gastrointestinal Epithelial Organoids. Current Protocols in Mouse Biology, 2013, 3, 217-240.	1.2	253
18	Gastric Sonic Hedgehog Acts as a Chemoattractant for Macrophages During Tissue Regeneration.	0.5	0

FASEB Journal, 2013, 27, 944.6.

#	Article	IF	CITATIONS
19	Gastric Sonic Hedgehog Acts as a Macrophage Chemoattractant During the Immune Response to Helicobacter pylori. Gastroenterology, 2012, 142, 1150-1159.e6.	1.3	90
20	Loss of Parietal Cell Expression of Sonic Hedgehog Induces Hypergastrinemia and Hyperproliferation of Surface Mucous Cells. Gastroenterology, 2010, 138, 550-561.e8.	1.3	79