
Volker Busskamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1205482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-Wavelength Computational Holography for Aberration-Corrected Simultaneous Optogenetic Stimulation and Inhibition of In Vitro Biological Samples. Applied Sciences (Switzerland), 2022, 12, 2283.	1.3	1
2	Tracking connectivity maps in human stem cell–derived neuronal networks by holographic optogenetics. Life Science Alliance, 2022, 5, e202101268.	1.3	6
3	Gene-independent therapeutic interventions to maintain and restore light sensitivity in degenerating photoreceptors. Progress in Retinal and Eye Research, 2022, 90, 101065.	7.3	4
4	Transplanted human cones incorporate into the retina and function in a murine cone degeneration model. Journal of Clinical Investigation, 2022, 132, .	3.9	26
5	A comprehensive library of human transcription factors for cell fate engineering. Nature Biotechnology, 2021, 39, 510-519.	9.4	110
6	Automated methods for cell type annotation on scRNA-seq data. Computational and Structural Biotechnology Journal, 2021, 19, 961-969.	1.9	122
7	Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28, 1740-1757.e8.	5.2	77
8	Neuronal Cell-type Engineering by Transcriptional Activation. Frontiers in Genome Editing, 2021, 3, 715697.	2.7	5
9	Analysis of human iPSC-derived neuronal networks (hiPSCNN) using holographic single cell and full field optogenetic stimulation. , 2021, , .		0
10	Whole transcriptomic network analysis using Co-expression Differential Network Analysis (CoDiNA). PLoS ONE, 2020, 15, e0240523.	1,1	13
11	The Rise of Retinal Organoids for Vision Research. International Journal of Molecular Sciences, 2020, 21, 8484.	1.8	13
12	Printed elastic membranes for multimodal pacing and recording of human stem-cell-derived cardiomyocytes. Npj Flexible Electronics, 2020, 4, .	5.1	8
13	Primate-restricted KRAB zinc finger proteins and target retrotransposons control gene expression in human neurons. Science Advances, 2020, 6, eaba3200.	4.7	50
14	Genetic Architecture of Parkinson's Disease in the Indian Population: Harnessing Genetic Diversity to Address Critical Gaps in Parkinson's Disease Research. Frontiers in Neurology, 2020, 11, 524.	1.1	23
15	Optogenetics for neural transplant manipulation and functional analysis. Biochemical and Biophysical Research Communications, 2020, 527, 343-349.	1.0	12
16	Using Transcriptomic Analysis to Assess Double-Strand Break Repair Activity: Towards Precise in Vivo Genome Editing. International Journal of Molecular Sciences, 2020, 21, 1380.	1.8	11
17	MiRNA Regulatory Functions in Photoreceptors. Frontiers in Cell and Developmental Biology, 2020, 8, 620249.	1.8	13
18	A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits. Biomaterials, 2019, 225, 119537.	5.7	24

VOLKER BUSSKAMP

#	Article	IF	CITATIONS
19	Retinal miRNA Functions in Health and Disease. Genes, 2019, 10, 377.	1.0	52
20	Highly Conductive, Stretchable, and Cellâ€Adhesive Hydrogel by Nanoclay Doping. Small, 2019, 15, e1901406.	5.2	62
21	Induced Neurons for the Study of Neurodegenerative and Neurodevelopmental Disorders. Methods in Molecular Biology, 2019, 1942, 101-121.	0.4	6
22	FUS pathology in ALS is linked to alterations in multiple ALS-associated proteins and rescued by drugs stimulating autophagy. Acta Neuropathologica, 2019, 138, 67-84.	3.9	94
23	Challenges in microRNAs' targetome prediction and validation. Neural Regeneration Research, 2019, 14, 1672.	1.6	15
24	Optogenetic Stimulation of Human Neural Networks Using Fast Ferroelectric Spatial Light Modulator—Based Holographic Illumination. Applied Sciences (Switzerland), 2018, 8, 1180.	1.3	32
25	Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis. Cell Systems, 2018, 7, 438-452.e8.	2.9	41
26	On-demand optogenetic activation of human stem-cell-derived neurons. Scientific Reports, 2017, 7, 14450.	1.6	23
27	Holographically generated structured illumination for cell stimulation in optogenetics. Proceedings of SPIE, 2017, , .	0.8	Ο
28	Functional Maturation of Human Stem Cell-Derived Neurons in Long-Term Cultures. PLoS ONE, 2017, 12, e0169506.	1.1	62
29	Biophysical Properties of Optogenetic Tools and Their Application for Vision Restoration Approaches. Frontiers in Systems Neuroscience, 2016, 10, 74.	1.2	41
30	Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis. Stem Cell Reports, 2016, 6, 525-538.	2.3	236
31	Vision Restoration Becomes Druggable. Neuron, 2016, 92, 3-5.	3.8	7
32	Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes. Cell Metabolism, 2015, 22, 239-252.	7.2	40
33	Rapid neurogenesis through transcriptional activation in human stem cells. Molecular Systems Biology, 2014, 10, 760.	3.2	187
34	Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adenoâ€associated virus capsid and promoter. EMBO Molecular Medicine, 2014, 6, 1175-1190.	3.3	149
35	Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 2014, 17, 1123-1129.	7.1	480
36	miRNAs 182 and 183 Are Necessary to Maintain Adult Cone Photoreceptor Outer Segments and Visual Function. Neuron, 2014, 83, 586-600.	3.8	125

VOLKER BUSSKAMP

#	Article	IF	CITATIONS
37	Optogenetic therapy for retinitis pigmentosa. Gene Therapy, 2012, 19, 169-175.	2.3	207
38	Optogenetic approaches to restoring visual function in retinitis pigmentosa. Current Opinion in Neurobiology, 2011, 21, 942-946.	2.0	82
39	Gene Therapy in Ophthalmology: Validation on Cultured Retinal Cells and Explants from Postmortem Human Eyes. Human Gene Therapy, 2011, 22, 587-593.	1.4	44
40	Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover asÂa Common Property of Neuronal MicroRNAs. Cell, 2010, 141, 618-631.	13.5	431
41	Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa. Science, 2010, 329, 413-417.	6.0	578
42	Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nature Methods, 2009, 6, 127-130.	9.0	85
43	Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nature Neuroscience, 2008, 11, 667-675.	7.1	522
44	KAP1-Mediated Epigenetic Repression in the Forebrain Modulates Behavioral Vulnerability to Stress. Neuron, 2008, 60, 818-831.	3.8	110