Volker Busskamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1205482/publications.pdf

Version: 2024-02-01

44 papers

4,237 citations

236612 25 h-index 243296 44 g-index

51 all docs

51 docs citations

times ranked

51

6309 citing authors

#	Article	IF	CITATIONS
1	Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa. Science, 2010, 329, 413-417.	6.0	578
2	Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nature Neuroscience, 2008, 11, 667-675.	7.1	522
3	Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 2014, 17, 1123-1129.	7.1	480
4	Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover asÂa Common Property of Neuronal MicroRNAs. Cell, 2010, 141, 618-631.	13.5	431
5	Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis. Stem Cell Reports, 2016, 6, 525-538.	2.3	236
6	Optogenetic therapy for retinitis pigmentosa. Gene Therapy, 2012, 19, 169-175.	2.3	207
7	Rapid neurogenesis through transcriptional activation in human stem cells. Molecular Systems Biology, 2014, 10, 760.	3.2	187
8	Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adenoâ€associated virus capsid and promoter. EMBO Molecular Medicine, 2014, 6, 1175-1190.	3.3	149
9	miRNAs 182 and 183 Are Necessary to Maintain Adult Cone Photoreceptor Outer Segments and Visual Function. Neuron, 2014, 83, 586-600.	3 . 8	125
10	Automated methods for cell type annotation on scRNA-seq data. Computational and Structural Biotechnology Journal, 2021, 19, 961-969.	1.9	122
11	KAP1-Mediated Epigenetic Repression in the Forebrain Modulates Behavioral Vulnerability to Stress. Neuron, 2008, 60, 818-831.	3 . 8	110
12	A comprehensive library of human transcription factors for cell fate engineering. Nature Biotechnology, 2021, 39, 510-519.	9.4	110
13	FUS pathology in ALS is linked to alterations in multiple ALS-associated proteins and rescued by drugs stimulating autophagy. Acta Neuropathologica, 2019, 138, 67-84.	3.9	94
14	Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nature Methods, 2009, 6, 127-130.	9.0	85
15	Optogenetic approaches to restoring visual function in retinitis pigmentosa. Current Opinion in Neurobiology, 2011, 21, 942-946.	2.0	82
16	Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28, 1740-1757.e8.	5.2	77
17	Functional Maturation of Human Stem Cell-Derived Neurons in Long-Term Cultures. PLoS ONE, 2017, 12, e0169506.	1.1	62
18	Highly Conductive, Stretchable, and Cellâ€Adhesive Hydrogel by Nanoclay Doping. Small, 2019, 15, e1901406.	5.2	62

#	Article	IF	Citations
19	Retinal miRNA Functions in Health and Disease. Genes, 2019, 10, 377.	1.0	52
20	Primate-restricted KRAB zinc finger proteins and target retrotransposons control gene expression in human neurons. Science Advances, 2020, 6, eaba3200.	4.7	50
21	Gene Therapy in Ophthalmology: Validation on Cultured Retinal Cells and Explants from Postmortem Human Eyes. Human Gene Therapy, 2011, 22, 587-593.	1.4	44
22	Biophysical Properties of Optogenetic Tools and Their Application for Vision Restoration Approaches. Frontiers in Systems Neuroscience, 2016, 10, 74.	1.2	41
23	Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis. Cell Systems, 2018, 7, 438-452.e8.	2.9	41
24	Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes. Cell Metabolism, 2015, 22, 239-252.	7.2	40
25	Optogenetic Stimulation of Human Neural Networks Using Fast Ferroelectric Spatial Light Modulatorâ€"Based Holographic Illumination. Applied Sciences (Switzerland), 2018, 8, 1180.	1.3	32
26	Transplanted human cones incorporate into the retina and function in a murine cone degeneration model. Journal of Clinical Investigation, 2022, 132, .	3.9	26
27	A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits. Biomaterials, 2019, 225, 119537.	5.7	24
28	On-demand optogenetic activation of human stem-cell-derived neurons. Scientific Reports, 2017, 7, 14450.	1.6	23
29	Genetic Architecture of Parkinson's Disease in the Indian Population: Harnessing Genetic Diversity to Address Critical Gaps in Parkinson's Disease Research. Frontiers in Neurology, 2020, 11, 524.	1.1	23
30	Challenges in microRNAs' targetome prediction and validation. Neural Regeneration Research, 2019, 14, 1672.	1.6	15
31	Whole transcriptomic network analysis using Co-expression Differential Network Analysis (CoDiNA). PLoS ONE, 2020, 15, e0240523.	1.1	13
32	The Rise of Retinal Organoids for Vision Research. International Journal of Molecular Sciences, 2020, 21, 8484.	1.8	13
33	MiRNA Regulatory Functions in Photoreceptors. Frontiers in Cell and Developmental Biology, 2020, 8, 620249.	1.8	13
34	Optogenetics for neural transplant manipulation and functional analysis. Biochemical and Biophysical Research Communications, 2020, 527, 343-349.	1.0	12
35	Using Transcriptomic Analysis to Assess Double-Strand Break Repair Activity: Towards Precise in Vivo Genome Editing. International Journal of Molecular Sciences, 2020, 21, 1380.	1.8	11
36	Printed elastic membranes for multimodal pacing and recording of human stem-cell-derived cardiomyocytes. Npj Flexible Electronics, 2020, 4, .	5.1	8

#	Article	IF	CITATIONS
37	Vision Restoration Becomes Druggable. Neuron, 2016, 92, 3-5.	3.8	7
38	Induced Neurons for the Study of Neurodegenerative and Neurodevelopmental Disorders. Methods in Molecular Biology, 2019, 1942, 101-121.	0.4	6
39	Tracking connectivity maps in human stem cell–derived neuronal networks by holographic optogenetics. Life Science Alliance, 2022, 5, e202101268.	1.3	6
40	Neuronal Cell-type Engineering by Transcriptional Activation. Frontiers in Genome Editing, 2021, 3, 715697.	2.7	5
41	Gene-independent therapeutic interventions to maintain and restore light sensitivity in degenerating photoreceptors. Progress in Retinal and Eye Research, 2022, 90, 101065.	7.3	4
42	Two-Wavelength Computational Holography for Aberration-Corrected Simultaneous Optogenetic Stimulation and Inhibition of In Vitro Biological Samples. Applied Sciences (Switzerland), 2022, 12, 2283.	1.3	1
43	Holographically generated structured illumination for cell stimulation in optogenetics. Proceedings of SPIE, 2017, , .	0.8	0
44	Analysis of human iPSC-derived neuronal networks (hiPSCNN) using holographic single cell and full field optogenetic stimulation., 2021,,.		0