
Erik A-ckinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1205259/publications.pdf Version: 2024-02-01

FRIK Ã-CKINCER

#	Article	lF	CITATIONS
1	The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 2013, 88, 15-30.	4.7	1,224
2	Extinction debt: a challenge for biodiversity conservation. Trends in Ecology and Evolution, 2009, 24, 564-571.	4.2	1,053
3	Habitat fragmentation causes immediate and timeâ€delayed biodiversity loss at different trophic levels. Ecology Letters, 2010, 13, 597-605.	3.0	620
4	Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. Journal of Applied Ecology, 2006, 44, 50-59.	1.9	347
5	Lifeâ€history traits predict species responses to habitat area and isolation: a crossâ€continental synthesis. Ecology Letters, 2010, 13, 969-979.	3.0	336
6	Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 2017, 31, 558-567.	1.7	290
7	Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2075-2082.	1.2	217
8	Effects of grassland abandonment, restoration and management on butterflies and vascular plants. Biological Conservation, 2006, 133, 291-300.	1.9	194
9	The importance of fragmentation and habitat quality of urban grasslands for butterfly diversity. Landscape and Urban Planning, 2009, 93, 31-37.	3.4	131
10	Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands. Oecologia, 2006, 149, 526-534.	0.9	123
11	Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography, 2012, 35, 259-267.	2.1	122
12	Is local distribution of the epiphytic lichen Lobaria pulmonaria limited by dispersal capacity or habitat quality?. Biodiversity and Conservation, 2005, 14, 759-773.	1.2	111
13	The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels. Biological Conservation, 2006, 128, 564-573.	1.9	104
14	Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Scientific Reports, 2016, 6, 31153.	1.6	92
15	Density of insectâ€pollinated grassland plants decreases with increasing surrounding landâ€use intensity. Ecology Letters, 2014, 17, 1168-1177.	3.0	87
16	Crop diversity benefits carabid and pollinator communities in landscapes with semiâ€natural habitats. Journal of Applied Ecology, 2020, 57, 2170-2179.	1.9	83
17	Extinction debt for plants and flowerâ€visiting insects in landscapes with contrasting land use history. Diversity and Distributions, 2014, 20, 591-599.	1.9	80
18	The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landscape Ecology, 2012, 27, 121-131.	1.9	78

Erik Öckinger

#	Article	IF	CITATIONS
19	Do corridors promote dispersal in grassland butterflies and other insects?. Landscape Ecology, 2008, 23, 27-40.	1.9	75
20	Butterfly distribution and abundance is affected by variation in the Swedish forest-farmland landscape. Biological Conservation, 2011, 144, 2819-2831.	1.9	73
21	Assessing the effect of the time since transition to organic farming on plants and butterflies. Journal of Applied Ecology, 2011, 48, 543-550.	1.9	64
22	Rightsâ€ofâ€way: a potential conservation resource. Frontiers in Ecology and the Environment, 2018, 16, 149-158.	1.9	53
23	Habitat amount and distribution modify community dynamics under climate change. Ecology Letters, 2021, 24, 950-957.	3.0	49
24	Local population extinction and vitality of an epiphytic lichen in fragmented oldâ€growth forest. Ecology, 2010, 91, 2100-2109.	1.5	48
25	Microâ€climate determines oviposition site selection and abundance in the butterfly <i>Pyrgus armoricanus</i> at its northern range margin. Ecological Entomology, 2013, 38, 183-192.	1.1	47
26	Butterflies in semiâ€natural pastures and powerâ€line corridors – effects of flower richness, management, and structural vegetation characteristics. Insect Conservation and Diversity, 2013, 6, 639-657.	1.4	47
27	Climate and land-cover change alter bumblebee species richness and community composition in subalpine areas. Biodiversity and Conservation, 2019, 28, 639-653.	1.2	43
28	Mobility-dependent effects on species richness in fragmented landscapes. Basic and Applied Ecology, 2009, 10, 573-578.	1.2	39
29	Experimental rewilding enhances grassland functional composition and pollinator habitat use. Journal of Applied Ecology, 2019, 56, 946-955.	1.9	36
30	Power-line corridors as source habitat for butterflies in forest landscapes. Biological Conservation, 2016, 201, 320-326.	1.9	35
31	Intensive management reduces butterfly diversity over time in urban green spaces. Urban Ecosystems, 2019, 22, 335-344.	1.1	34
32	Recovery of plant diversity in restored semiâ€natural pastures depends on adjacent land use. Applied Vegetation Science, 2015, 18, 413-422.	0.9	33
33	Butterflies in Swedish grasslands benefit from forest and respond to landscape composition at different spatial scales. Landscape Ecology, 2018, 33, 2189-2204.	1.9	33
34	Species' traits influence ground beetle responses to farm and landscape level agricultural intensification in Europe. Journal of Insect Conservation, 2014, 18, 837-846.	0.8	31
35	Climate-driven changes in pollinator assemblages during the last 60Âyears in an Arctic mountain region in Northern Scandinavia. Journal of Insect Conservation, 2012, 16, 227-238.	0.8	30
36	Contrasting effects of habitat area and connectivity on evenness of pollinator communities. Ecography, 2014, 37, 544-551.	2.1	30

Erik Öckinger

#	Article	IF	CITATIONS
37	Landscape simplification weakens the association between terrestrial producer and consumer diversity in Europe. Global Change Biology, 2017, 23, 3040-3051.	4.2	28
38	Associations between plant and pollinator communities under grassland restoration respond mainly to landscape connectivity. Journal of Applied Ecology, 2018, 55, 2822-2833.	1.9	25
39	Host plant density and patch isolation drive occupancy and abundance at a butterfly's northern range margin. Ecology and Evolution, 2017, 7, 331-345.	0.8	24
40	Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climateâ€driven range shift in a butterfly. Journal of Animal Ecology, 2017, 86, 1339-1351.	1.3	24
41	Asymmetric dispersal and survival indicate population sources for grassland butterflies in agricultural landscapes. Ecography, 2007, 30, 288-298.	2.1	23
42	Landscape Structure Shapes Habitat Finding Ability in a Butterfly. PLoS ONE, 2012, 7, e41517.	1.1	23
43	Effects of landscape composition, species pool and time on grassland specialists in restored semi-natural grasslands. Biological Conservation, 2017, 214, 176-183.	1.9	22
44	Mobility and resource use influence the occurrence of pollinating insects in restored seminatural grassland fragments. Restoration Ecology, 2018, 26, 873-881.	1.4	22
45	Compensating for lost nature values through biodiversity offsetting – Where is the evidence?. Biological Conservation, 2021, 257, 109117.	1.9	22
46	High mobility reduces betaâ€diversity among orthopteran communities – implications for conservation. Insect Conservation and Diversity, 2012, 5, 37-45.	1.4	20
47	Restoration of semi-natural grasslands, a success for phytophagous beetles (Curculionidae). Biodiversity and Conservation, 2016, 25, 3005-3022.	1.2	20
48	Sustained functional composition of pollinators in restored pastures despite slow functional restoration of plants. Ecology and Evolution, 2017, 7, 3836-3846.	0.8	20
49	Assessing agri-environmental schemes for semi-natural grasslands during a 5-year period: can we see positive effects for vascular plants and pollinators?. Biodiversity and Conservation, 2019, 28, 3989-4005.	1.2	18
50	Weak functional response to agricultural landscape homogenisation among plants, butterflies and birds. Ecography, 2017, 40, 1221-1230.	2.1	17
51	Pollinator foraging flexibility mediates rapid plant-pollinator network restoration in semi-natural grasslands. Scientific Reports, 2019, 9, 15473.	1.6	17
52	Operationalisation of ecological compensation – Obstacles and ways forward. Journal of Environmental Management, 2022, 304, 114277.	3.8	17
53	Possible Metapopulation Structure of the Threatened ButterflyPyrgus armoricanus in Sweden. Journal of Insect Conservation, 2006, 10, 43-51.	0.8	16
54	Allometric density responses in butterflies: the response to small and large patches by small and large species. Ecography, 2010, 33, 1149-1156.	2.1	15

Erik Öckinger

#	Article	IF	CITATIONS
55	Field scale organic farming does not counteract landscape effects on butterfly trait composition. Agriculture, Ecosystems and Environment, 2012, 158, 66-71.	2.5	12
56	Microclimatic conditions mediate the effect of deadwood and forest characteristics on a threatened beetle species, Tragosoma depsarium. Oecologia, 2022, 199, 737-752.	0.9	12
57	Distribution of burnet moths (<i>Zygaena</i> spp.) in relation to larval and adult resources on two spatial scales. Insect Conservation and Diversity, 2008, 1, 48-54.	1.4	11
58	Bees increase seed set of wild plants while the proportion of arable land has a variable effect on pollination in European agricultural landscapes. Plant Ecology and Evolution, 2021, 154, 341-350.	0.3	11
59	Community completeness as a measure of restoration success: multiple-study comparisons across ecosystems and ecological groups. Biodiversity and Conservation, 2020, 29, 3807-3827.	1.2	10
60	Linear infrastructure habitats increase landscape-scale diversity of plants but not of flower-visiting insects. Scientific Reports, 2020, 10, 21374.	1.6	9
61	Mobility, habitat selection and population connectivity of the butterfly Lycaena helle in central Sweden. Journal of Insect Conservation, 2020, 24, 821-831.	0.8	8
62	Butterfly monitoring using systematically placed transects in contrasting climatic regions – exploring an established spatial design for sampling. Nature Conservation, 0, 14, 41-62.	0.0	7
63	Habitat preferences and conservation of the marbled jewel beetle Poecilonota variolosa (Buprestidae). Journal of Insect Conservation, 2013, 17, 1145-1154.	0.8	6
64	Different patterns in species richness and community composition between trees, plants and epiphytic lichens in semi-natural pastures under agri-environment schemes. Biodiversity and Conservation, 2015, 24, 1729-1742.	1.2	6
65	Road verges are corridors and roads barriers for the movement of flowerâ€visiting insects. Ecography, 2022, 2022, .	2.1	6
66	Bumblebee queen mortality along roads increase with traffic. Biological Conservation, 2022, 272, 109643.	1.9	6
67	Decline of parasitic and habitat-specialist species drives taxonomic, phylogenetic and functional homogenization of sub-alpine bumblebee communities. Oecologia, 2021, 196, 905-917.	0.9	5
68	Population dynamics of the butterfly Pyrgus armoricanus after translocation beyond its northern range margin. Insect Conservation and Diversity, 2020, 13, 617-629.	1.4	2
69	Can field botany be effectively taught as a distance course? Experiences and reflections from the COVID-19 pandemic. AoB PLANTS, 2022, 14, plab079.	1.2	2