
Wolfgang EinhĤuser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1205029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pupillometry as an integrated readout of distinct attentional networks. Trends in Neurosciences, 2022, 45, 635-647.	8.6	70
2	Perceptual Difficulty Persistently Increases Dominance in Binocular Rivalry—Even Without a Task. Perception, 2021, 50, 343-366.	1.2	0
3	Parameter dependence in visual pattern-component rivalry at onset and during prolonged viewing. Vision Research, 2021, 182, 69-88.	1.4	1
4	Gaze During Locomotion in Virtual Reality and the Real World. Frontiers in Neuroscience, 2021, 15, 656913.	2.8	10
5	Pupillometry in auditory multistability. PLoS ONE, 2021, 16, e0252370.	2.5	4
6	lcy road ahead—rapid adjustments of gaze–gait interactions during perturbed naturalistic walking. Journal of Vision, 2021, 21, 11.	0.3	4
7	Intraindividual Consistency Between Auditory and Visual Multistability. Perception, 2020, 49, 119-138.	1.2	4
8	Anterior insula reflects surprise in value-based decision-making and perception. NeuroImage, 2020, 210, 116549.	4.2	38
9	Picture-evoked changes in pupil size predict learning success in children. Journal of Experimental Child Psychology, 2020, 192, 104787.	1.4	8
10	Fixation durations in natural scene viewing are guided by peripheral scene content. Journal of Vision, 2020, 20, 15.	0.3	10
11	Salience-based object prioritization during active viewing of naturalistic scenes in young and older adults. Scientific Reports, 2020, 10, 22057.	3.3	16
12	Optimizing user interfaces in food production: gaze tracking is more sensitive for A-B-testing than behavioral data alone. , 2020, , .		2
13	Using Attentional Modulation of the Pupillary Light Response to Study the Mechanisms Underlying Object-Based Attention Journal of Vision, 2020, 20, 1215.	0.3	0
14	Icy road ahead – gaze during perturbed walking. Journal of Vision, 2020, 20, 559.	0.3	0
15	Induced pupil oscillations characterize the size of the attentional window at different levels of attentional load. Journal of Vision, 2019, 19, 102.	0.3	0
16	Action-based predictions affect visual perception, neural processing, and pupil size, regardless of temporal predictability. Journal of Vision, 2019, 19, 290b.	0.3	0
17	Parameter dependence of first and subsequent percepts in visual tri-stability. Journal of Vision, 2019, 19, 62c.	0.3	0
18	Cognition modulates action-to-perception transfer in ambiguous perception. Journal of Vision, 2018, 18–5	0.3	7

Wolfgang EinhÄ**g**ser

#	Article	IF	CITATIONS
19	Continuous flash suppression: Manual action affects eye movements but not the reported percept. Journal of Vision, 2018, 18, 8.	0.3	5
20	Visual Awareness in Binocular Rivalry Modulates Induced Pupil Fluctuations. Journal of Cognition, 2018, 1, 12.	1.4	2
21	Salience-based object prioritization during natural-scene viewing in elderly and young adults. Journal of Vision, 2018, 18, 379.	0.3	0
22	Biological motion distorts size perception. Scientific Reports, 2017, 7, 42576.	3.3	2
23	Newly acquired audio-visual associations bias perception in binocular rivalry. Vision Research, 2017, 133, 121-129.	1.4	10
24	Attention in natural scenes: Affective-motivational factors guide gaze independently of visual salience. Vision Research, 2017, 133, 161-175.	1.4	30
25	The Pupil as Marker of Cognitive Processes. Cognitive Science and Technology, 2017, , 141-169.	0.4	46
26	Motivational Objects in Natural Scenes (MONS): A Database of >800 Objects. Frontiers in Psychology, 2017, 8, 1669.	2.1	2
27	How Well Can Saliency Models Predict Fixation Selection in Scenes Beyond Central Bias? A New Approach to Model Evaluation Using Generalized Linear Mixed Models. Frontiers in Human Neuroscience, 2017, 11, 491.	2.0	25
28	Using binocular rivalry to tag foreground sounds: Towards an objective visual measure for auditory multistability. Journal of Vision, 2017, 17, 34.	0.3	8
29	Audio-visual Interactions in Multistable Perception: Evidence from No-report Paradigms. Journal of Vision, 2017, 17, 1215.	0.3	Ο
30	Salient in space, salient in time: Fixation probability predicts fixation duration during natural scene viewing. Journal of Vision, 2016, 16, 13.	0.3	17
31	Eye movements of patients with schizophrenia in a natural environment. European Archives of Psychiatry and Clinical Neuroscience, 2016, 266, 43-54.	3.2	32
32	Evidence from pupillometry and fMRI indicates reduced neural response during vicarious social pain but not physical pain in autism. Human Brain Mapping, 2015, 36, 4730-4744.	3.6	75
33	Reward modulates perception in binocular rivalry. Journal of Vision, 2015, 15, 11-11.	0.3	63
34	Effects of aging on eye movements in the real world. Frontiers in Human Neuroscience, 2015, 9, 46.	2.0	99
35	Visual Search in the Real World: Color Vision Deficiency Affects Peripheral Guidance, but Leaves Foveal Verification Largely Unaffected. Frontiers in Human Neuroscience, 2015, 9, 680.	2.0	4
36	Fronto-insula network activity explains emotional dysfunctions in juvenile myoclonic epilepsy: Combined evidence from pupillometry and fMRI. Cortex, 2015, 65, 219-231.	2.4	25

Wolfgang EinhÄ**q**ser

#	Article	IF	CITATIONS
37	Overt attention in natural scenes: Objects dominate features. Vision Research, 2015, 107, 36-48.	1.4	70
38	Neural pathways of embarrassment and their modulation by social anxiety. NeuroImage, 2015, 119, 252-261.	4.2	97
39	Competition with and without priority control: linking rivalry to attention through winnerâ€ŧakeâ€all networks with memory. Annals of the New York Academy of Sciences, 2015, 1339, 138-153.	3.8	2
40	A new approach to modeling the influence of image features on fixation selection in scenes. Annals of the New York Academy of Sciences, 2015, 1339, 82-96.	3.8	36
41	Introduction to <i>Competitive Visual Processing Across Space and Time: Attention, Memory, and Prediction</i> . Annals of the New York Academy of Sciences, 2015, 1339, v-viii.	3.8	1
42	Gaze in Visual Search Is Guided More Efficiently by Positive Cues than by Negative Cues. PLoS ONE, 2015, 10, e0145910.	2.5	12
43	Rapid serial processing of natural scenes: Color modulates detection but neither recognition nor the attentional blink. Journal of Vision, 2014, 14, 4-4.	0.3	7
44	Binocular Rivalry: Frontal Activity Relates to Introspection and Action But Not to Perception. Journal of Neuroscience, 2014, 34, 1738-1747.	3.6	284
45	Pupil responses allow communication in locked-in syndrome patients. Current Biology, 2013, 23, R647-R648.	3.9	79
46	Attention in natural scenes: contrast affects rapid visual processing and fixations alike. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130067.	4.0	26
47	Pupil size signals novelty and predicts later retrieval success for declarative memories of natural scenes. Journal of Vision, 2013, 13, 11-11.	0.3	84
48	Attentional selection in visual perception, memory and action: a quest for cross-domain integration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130053.	4.0	24
49	Objects and saliency: Reply to Borji et al Journal of Vision, 2013, 13, 20-20.	0.3	6
50	How to Become a Mentalist: Reading Decisions from a Competitor's Pupil Can Be Achieved without Training but Requires Instruction. PLoS ONE, 2013, 8, e73302.	2.5	10
51	Fixations on objects in natural scenes: dissociating importance from salience. Frontiers in Psychology, 2013, 4, 455.	2.1	28
52	Animal detection and identification in natural scenes: Image statistics and emotional valence. Journal of Vision, 2012, 12, 25-25.	0.3	40
53	Mind the step: complementary effects of an implicit task on eye and head movements in real-life gaze allocation. Experimental Brain Research, 2012, 223, 233-249.	1.5	57
54	Validation of mobile eye-tracking as novel and efficient means for differentiating progressive supranuclear palsy from Parkinson's disease. Frontiers in Behavioral Neuroscience, 2012, 6, 88.	2.0	44

#	Article	IF	CITATIONS
55	Perceptual benefits of objecthood. Journal of Vision, 2011, 11, 8-8.	0.3	14
56	Pupil dilation signals surprise: evidence for noradrenaline's role in decision making. Frontiers in Neuroscience, 2011, 5, 115.	2.8	359
57	Perceptual Rivalry: Reflexes Reveal the Gradual Nature of Visual Awareness. PLoS ONE, 2011, 6, e20910.	2.5	135
58	Faces in Places: Humans and Machines Make Similar Face Detection Errors. PLoS ONE, 2011, 6, e25373.	2.5	4
59	Getting real—sensory processing of natural stimuli. Current Opinion in Neurobiology, 2010, 20, 389-395.	4.2	29
60	Tri-stable stimuli reveal interactions among subsequent percepts: Rivalry is biased by perceptual history. Vision Research, 2010, 50, 818-828.	1.4	25
61	Online action-to-perception transfer: Only percept-dependent action affects perception. Vision Research, 2010, 50, 2633-2641.	1.4	30
62	Pupil dilation betrays the timing of decisions. Frontiers in Human Neuroscience, 2010, 4, 18.	2.0	117
63	Gaze allocation in natural stimuli: Comparing free exploration to head-fixed viewing conditions. Visual Cognition, 2009, 17, 1132-1158.	1.6	86
64	Effects of luminance contrast and its modifications on fixation behavior during free viewing of images from different categories. Vision Research, 2009, 49, 1541-1553.	1.4	42
65	Automatic computation of an image's statistical surprise predicts performance of human observers on a natural image detection task. Vision Research, 2009, 49, 1620-1637.	1.4	11
66	Eye–Head Coordination during Free Exploration in Human and Cat. Annals of the New York Academy of Sciences, 2009, 1164, 353-366.	3.8	24
67	Distinct Roles for Eye and Head Movements in Selecting Salient Image Parts during Natural Exploration. Annals of the New York Academy of Sciences, 2009, 1164, 188-193.	3.8	15
68	Saliency on a natural scene background: Effects of color and luminance contrast add linearly. Attention, Perception, and Psychophysics, 2009, 71, 1337-1352.	1.3	34
69	Decoding What People See from Where They Look: Predicting Visual Stimuli from Scanpaths. Lecture Notes in Computer Science, 2009, , 15-26.	1.3	14
70	Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. Journal of Vision, 2008, 8, 2.	0.3	222
71	Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1704-1709.	7.1	304
72	Reply to Hupé <i>et al.</i> : The predictive correlation of pupil dilation and relative dominance durations in rivalry is not a statistical artifact. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, .	7.1	0

Wolfgang EinhÄ**g**ser

#	Article	IF	CITATIONS
73	Spatial attention increases performance but not subjective confidence in a discrimination task. Journal of Vision, 2008, 8, 7.	0.3	82
74	Salient features in gaze-aligned recordings of human visual input during free exploration of natural environments. Journal of Vision, 2008, 8, 12-12.	0.3	53
75	Objects predict fixations better than early saliency. Journal of Vision, 2008, 8, 18-18.	0.3	363
76	Color aids late but not early stages of rapid natural scene recognition. Journal of Vision, 2008, 8, 12-12.	0.3	14
77	Automatic Detection of Learnability under Unreliable and Sparse User Feedback. Lecture Notes in Computer Science, 2008, , 224-233.	1.3	1
78	A bottom–up model of spatial attention predicts human error patterns in rapid scene recognition. Journal of Vision, 2007, 7, 6.	0.3	26
79	Human eye-head co-ordination in natural exploration. Network: Computation in Neural Systems, 2007, 18, 267-297.	3.6	83
80	The duration of the attentional blink in natural scenes depends on stimulus category. Vision Research, 2007, 47, 597-607.	1.4	47
81	Observers are consistent when rating image conspicuity. Vision Research, 2007, 47, 3052-3060.	1.4	14
82	The role of first- and second-order stimulus features for human overt attention. Perception & Psychophysics, 2007, 69, 153-161.	2.3	29
83	The relation of phase noise and luminance contrast to overt attention in complex visual stimuli. Journal of Vision, 2006, 6, 1-1.	0.3	35
84	Differences of monkey and human overt attention under natural conditions. Vision Research, 2006, 46, 1194-1209.	1.4	68
85	Learning viewpoint invariant object representations using a temporal coherence principle. Biological Cybernetics, 2005, 93, 79-90.	1.3	44
86	Learning of somatosensory representations for texture discrimination using a temporal coherence principle. Network: Computation in Neural Systems, 2005, 16, 223-238.	3.6	7
87	Are switches in perception of the Necker cube related to eye position?. European Journal of Neuroscience, 2004, 20, 2811-2818.	2.6	61
88	The world from a cat?s perspective ? statistics of natural videos. Biological Cybernetics, 2004, 90, 41-50.	1.3	138
89	How Are Complex Cell Properties Adapted to the Statistics of Natural Stimuli?. Journal of Neurophysiology, 2004, 91, 206-212.	1.8	120
90	Temporal correlations of orientations in natural scenes. Neurocomputing, 2003, 52-54, 117-123.	5.9	33

#	Article	IF	CITATIONS
91	Does luminance-contrast contribute to a saliency map for overt visual attention?. European Journal of Neuroscience, 2003, 17, 1089-1097.	2.6	185
92	Learning Distinct and Complementary Feature Selectivities from Natural Colour Videos. Reviews in the Neurosciences, 2003, 14, 43-52.	2.9	4
93	Learning the invariance properties of complex cells from their responses to natural stimuli. European Journal of Neuroscience, 2002, 15, 475-486.	2.6	72
94	Learning Multiple Feature Representations from Natural Image Sequences. Lecture Notes in Computer Science, 2002, , 21-26.	1.3	3
95	Extracting Slow Subspaces from Natural Videos Leads to Complex Cells. Lecture Notes in Computer Science, 2001, , 1075-1080.	1.3	33