
Kanchan Chowdhury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12050036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategizing practical implementation of additional condenser-reboilers (CR) to reduce power consumption of a dual purity cryogenic single column gaseous oxygen plant. Cryogenics, 2022, , 103496.	1.7	0
2	Enhancing generation of green power from the cold of vaporizing LNG at 30Âbar by optimising heat exchanger surface area in a multi-staged organic Rankine cycle. Sustainable Energy Technologies and Assessments, 2021, 43, 100930.	2.7	5
3	Optimizing distribution of heat exchanger surface areas for enhanced power output from vaporizing LNG at 6Abar in an organic Rankine cycle. Thermal Science and Engineering Progress, 2021, 21, 100779.	2.7	1
4	Effect of precooling with transcritical CO2 cycle on two types of LNG boil-off gas reliquefaction systems. Journal of Natural Gas Science and Engineering, 2021, 89, 103876.	4.4	10
5	Enhanced oxygen recovery and energy efficiency in a reconfigured single column air separation unit producing pure and impure oxygen simultaneously. Chemical Engineering and Processing: Process Intensification, 2021, 162, 108354.	3.6	12
6	Determining design criteria to reduce power and cost in filling high-pressure oxygen cylinders directly from cryogenic air separation plants. Cryogenics, 2021, 116, 103299.	1.7	5
7	Reducing power consumption in a cryogenic air separation plant for filling oxygen cylinders in-situ by utilizing thermal energy of pumped liquid oxygen. Applied Thermal Engineering, 2021, , 117623.	6.0	4
8	Essential design criteria for safe and efficient operation of an LNG boil-off gas reliquefier under deteriorated performance of system components. Cryogenics, 2021, , 103371.	1.7	1
9	Saving power by modifying a double column air separation plant to produce high and low purity pressurized gaseous oxygen simultaneously. Energy, 2020, 210, 118487.	8.8	12
10	Zero methane loss in reliquefaction of boil-off gas in liquefied natural gas carrier ships by using packed bed distillation in reverse Brayton system. Journal of Cleaner Production, 2020, 260, 121037.	9.3	22
11	Use of dual pressure Claude liquefaction cycles for complete and energy-efficient reliquefaction of boil-off gas in LNG carrier ships. Energy, 2020, 198, 117345.	8.8	18
12	Comparisons of thermodynamic and economic performances of cryogenic air separation plants designed for external and internal compression of oxygen. Applied Thermal Engineering, 2019, 160, 114025.	6.0	28
13	LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 2: Improvements over basic configuration. Energy, 2019, 176, 861-873.	8.8	20
14	LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 1: Exergy analysis and design of the basic configuration. Energy, 2019, 176, 753-764.	8.8	33
15	Process configuration of Liquid-nitrogen Energy Storage System (LESS) for maximum turnaround efficiency. Cryogenics, 2017, 88, 132-142.	1.7	16
16	Comparison between reverse Brayton and Kapitza based LNG boil-off gas reliquefaction system using exergy analysis. IOP Conference Series: Materials Science and Engineering, 2017, 171, 012009.	0.6	9
17	Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production. IOP Conference Series: Materials Science and Engineering, 2017, 171, 012016.	0.6	5
18	Fatal Accident from an Oxygen Fire in an Indian Steel Plant in 2012: Unresolved Questions. , 2016, ,		1

18 205-233.

#	Article	IF	CITATIONS
19	Optimization of UA of heat exchangers and BOG compressor exit pressure of LNG boil-off gas reliquefaction system using exergy analysis. IOP Conference Series: Materials Science and Engineering, 2015, 101, 012090.	0.6	1
20	Identification of critical equipment and determination of operational limits in helium refrigerators under pulsed heat load. Cryogenics, 2014, 59, 23-37.	1.7	2
21	Evaluating performance of mixed mode multistage helium plants for design and off-design conditions by exergy analysis. International Journal of Refrigeration, 2014, 38, 46-57.	3.4	6
22	Fires in Indian hospitals: root cause analysis and recommendations for their prevention. Journal of Clinical Anesthesia, 2014, 26, 414-424.	1.6	26
23	Exergy analysis of large-scale helium liquefiers: Evaluating design trade-offs. , 2014, , .		2
24	Optimum number of stages and intermediate pressure level for highest exergy efficiency in large helium liquefiers. International Journal of Refrigeration, 2013, 36, 2438-2457.	3.4	11
25	Mitigation of effects of pulsed heat load from fusion devices on helium refrigerator: A novel technique using vapor compression cycle. International Journal of Refrigeration, 2013, 36, 1776-1789.	3.4	3
26	A cycle configuration for large-scale helium refrigerator for fusion devices towards complete mitigation of the effects of pulsed heat load. Fusion Engineering and Design, 2013, 88, 2972-2982.	1.9	4
27	Exergy Analysis of Different Cold End Configurations for Helium Liquefiers. Journal of Thermal Science and Engineering Applications, 2012, 4, .	1.5	4
28	Role of heat exchangers in helium liquefaction cycles: Simulation studies using Collins cycle. Fusion Engineering and Design, 2012, 87, 39-46.	1.9	20
29	Applicability of equations of state for modeling helium systems. Cryogenics, 2012, 52, 375-381.	1.7	12
30	Exergy based analysis on different expander arrangements in helium liquefiers. International Journal of Refrigeration, 2012, 35, 1188-1199.	3.4	23
31	Application of exergy analysis in designing helium liquefiers. Energy, 2012, 37, 207-219.	8.8	22
32	Exergy analysis of helium liquefaction systems based on modified Claude cycle with two-expanders. Cryogenics, 2011, 51, 287-294.	1.7	30
33	Customization and validation of a commercial process simulator for dynamic simulation of Helium liquefier. Energy, 2011, 36, 3204-3214.	8.8	27
34	Role of expanders in helium liquefaction cycles: Parametric studies using Collins cycle. Fusion Engineering and Design, 2011, 86, 318-324.	1.9	23
35	Effect of Flow Maldistribution on Multipassage Heat Exchanger Performance. Heat Transfer Engineering, 1985, 6, 45-54.	1.9	23
36	Performance of Cryogenic Heat Exchangers with Heat Leak from the Surroundings. , 1984, , 273-280.		27